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Представлены результаты анализа натурных данных измерений сдвиговых стратифицированных 
потоков на шельфе Японского моря. Определение критических зон и слоёв выполнено в терми-
нах безразмерных параметров Фруда и  Ричардсона. Показано, что при прохождении внутрен-
них боров высокой интенсивности имеют место достаточно протяжённые (до нескольких часов) 
временные интервалы, для которых характерен сверхкритический по Фруду режим, когда пред-
сказывается и происходит активная генерация короткопериодных внутренних волн большой ам-
плитуды. Статистика чисел Ричардсона показывает, что с  нижней оценкой вероятности в  слое 
измерения течений за  время наблюдений возникновение сдвиговой неустойчивости возможно 
в 15% случаев, а её сохранение – в 44% случаев.
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ВВЕДЕНИЕ

Мониторинг и  прогнозирование течений, 
особенно в шельфовой зоне, играет очень важ-
ную роль в  планировании хозяйственной дея-
тельности человека, инженерных изысканиях 
и  предсказании потенциального воздействия 
на прибрежную экосистему. Оценки параметров 
сдвиговых стратифицированных потоков необ-
ходимы не  только на  начальных этапах проек-
тирования различных гидротехнических систем 
(от нефтегазодобывающих платформ до  пре-
образователей волновой энергии), но  и  для 
дальнейшей эксплуатации объектов морской 

инфраструктуры, поскольку эти параметры яв-
ляются входными данными для моделей, по-
зволяющих прогнозировать нагрузки на  кон-
струкции, потенциальные размывы грунтов 
и распространение примесей и загрязнений. 

Задачи, связанные с  описанием энергети-
ческих каскадов, гидродинамической неустой-
чивости, ламинарно-турбулентных переходов 
и придонного турбулентного пограничного слоя 
в естественных сдвиговых стратифицированных 
потоках, составляют фундаментальные пробле-
мы механики жидкости и гидрофизики океана, 
представляющие большой прикладной интерес. 
Сдвиговые течения на  шельфе формируются 
под влиянием комплекса физических факторов 
окружающей среды, таких как атмосферные воз-
действия, топографические эффекты, локаль-
ные силы плавучести и приливные потоки. Важ-
ное значение при исследовании таких течений 
имеют временная изменчивость и  простран-
ственные особенности распределения поля ско-
рости, а  также поддерживающие их динамиче-
ские механизмы. Первым этапом качественного 
понимания динамики происходящих процессов 
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является использование простых общеизвест-
ных физических критериев (не)устойчивости, 
в основе которых лежат модели и методы теории 
линейных и нелинейных колебаний и волн. Эти 
критерии построены на  безразмерных параме-
трах Фруда и Ричардсона. Здесь мы используем 
их для предварительного анализа динамиче-
ских процессов, наблюдавшихся осенью 2022 г. 
на шельфе Японского моря.

ДАННЫЕ ИЗМЕРЕНИЙ

Исследования сдвиговых стратифициро-
ванных потоков применительно к  условиям 
Японского моря (залив Петра Великого) выпол-
нялись на  гидрофизическом полигоне Тихоо-
кеанского океанологического института ДВО 
РАН, схема которого представлена на  рис. 1. 
Подробное описание натурных экспериментов, 
выполненных на  полигоне, представлено в  ра-
ботах [1–3].

Для расчётов использованы осреднённые 
по 1 мин. данные регистратора горизонтальных 
течений Infinity с трёх горизонтов и данные тер-
могирлянд с дискретностью 10 с и CTD зондиро-
вания в период с 12:53 8 октября по 14:16 12 октя-
бря 2022 г, полученные ТОИ ДВО РАН. Течение 
измеряли в точке INF (см. рис. 1, 124 м от стан-
ции S06), глубина дна 41.5 м. Скорости (мериди-
ональная и зональная компоненты) измерялись 
на трёх уровнях: 2, 8, 14 м от дна (соответственно 
39.5 м, 33.5 м, 27.5 м глубины). Термогирлянда 
на  станции S06 состояла из  35  датчиков, по-
следний датчик располагался в 2 м от дна. Плот-
ность была восстановлена по уравнению состо-
яния морской воды TEOS-10 с использованием 
профиля солёности, измеренного CTD-зондом 
на станции S04.

Результаты измерений скорости течения 
в  нижнем слое моря на  станции INF показаны 
на  рис. 2 (зональная (U) и  меридиональная (V) 
компоненты). Видно, что скорость течения весь-
ма значительна (в отдельные моменты времени 
превышает 0.4 м/с), имеет ярко выраженную вер-
тикальную структуру, также характерна сильная 
изменчивость во времени, как по величине, так 
и  по направлению. Фрагмент записи в  период 
от 40 до 90 часов от начала записи характеризу-
ется заметной квазипериодичностью с преобла-
данием длинноволновых компонент с периодом 
близким к  инерционному периоду для широты 
места наблюдений (16–18 ч). В поле температуры 
и плотности в этот же период были выявлены три 
ярко выраженных внутренних волновых фронта 
с теми же спектральными свойствами. 

АНАЛИЗ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Выделение критических зон и  слоёв в  из-
меренных полях течений было выполнено 
с  помощью классического подхода на  основа-
нии расчётов чисел Фруда и  Ричардсона [4–6]. 
В  наиболее общепринятом понимании число 
Фруда Fr представляет собой отношение ско-
ростей, с которыми два процесса, а именно, ад-
вективный и волновой, переносят информацию 
о  возмущении в  среде. Локально число Фруда 
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Рис. 1. Карта района измерений с  указанием стан-
ций гидрофизического полигона ТОИ ДВО РАН
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Рис. 2. Зональная и  меридиональная компоненты 
скорости, измеренные на станции INF
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также представляет собой соотношение кинети-
ческой и потенциальной энергии потока и опре-
деляет поток как докритический или сверхкри-
тический. Для стратифицированных жидкостей 
существует множество формулировок этого кри-
терия, в том числе в зависимости от типа волно-
вого процесса (см., более подробно в работе [7]). 
Число Фруда для измеренного в точке стратифи-
цированного потока в  присутствии внутренних 
волн может быть рассчитано как:

	 Fr t
u z t

c t
z( )

max ( , )

( )
=



,	

где с  – фазовая скорость длинных линейных 
внутренних волн первой моды, алгоритм расче-
та этой величины дан, например, в  работах [8, 
9]. Критерием линейной устойчивости в терми-
нах чисел Фруда здесь являются значения Fr < 1. 
Режим Fr > 1 соответствует активной генерации 
интенсивных внутренних волн [10, 11]. 

Число Фруда и  величины, необходимые для 
расчёта этого параметра, по данным измерений 
на  станциях S06 и  INF показаны на  рис. 3. Из 
этого рисунка видно, что имеют место доста-
точно протяжённые временные интервалы, для 
которых характерен сверхкритический режим. 
Эти временные интервалы как раз соответствуют 
прохождению внутренних боров высокой интен-
сивности, на  которых генерируются короткопе-
риодные внутренние волны большой амплитуды. 

Градиентное число Ричардсона (Ri) для на-
шей задачи определяется из соотношения: 
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здесь N  – частота плавучести, z  – глубина, g  – 
ускорение свободного падения, r  – плотность 
воды, Sh – модуль вертикального сдвига скорости 
течения, V и U – северная и восточная компонен-
ты скорости течения, соответственно. Параметр 
Ri часто используется при решении задач, связан-
ных с  вопросами вертикального турбулентного 
перемешивания в стратифицированной морской 
среде [12–16]. Существуют два критерия: для ли-
нейной неустойчивости сдвигового потока необ-
ходимым (но недостаточным) условием является 
Ri < 0.25 [17, 18], а для нелинейной устойчивости 
необходимым и достаточным условием является 
Ri > 1 [19]. Согласно данным глоссария [20] суще-
ствует предположение о гистерезисе: ламинарный 
поток становится турбулентным при Ri < 0.25, 
но  турбулентный поток может существовать 
до Ri = 1.0, прежде чем стать ламинарным.

Расчёты вспомогательных величин для вы-
числения градиентного числа Ричардсона Ri: 
квадрата частоты плавучести N z t2( , ) по данным 

наблюдений на станции S06 и величин ∂
∂
U
z

 и ∂
∂
V
z

 

по  данным наблюдений на  станции INF пока-
зывают, что числитель и  знаменатель Ri имеют 
один и тот же порядок величины – 10–4 1/с, по-
этому неустойчивые режимы могут реализовы-
ваться в  районе измерений. Это подтверждает-
ся и рис. 4, где показан параметр Ri от времени 
(вместе с  критическими значениями Ri = 0.25 
и Ri = 1) для верхнего (27.5 м < z < 33.5 м) и ниж-
него (33.5 м < z < 39.5 м) придонных слоёв, где 
проводились измерения течения на станции INF. 
Вероятность выполнения необходимого условия 
неустойчивости P(Ri < 0.25) сдвигового потока 
в  нижнем слое составляет 16%, а  в верхнем  – 
15%. На рис. 5 показана диаграмма рассеяния 
N2 – Sh2, рассчитанная по данным наблюдений 
на  станциях S06 и  INF. Учёт двух критических 
значений показывает, что в слое измерения тече-
ний за время наблюдений генерация турбулент-
ной кинетической энергии возможна примерно 
в 15% случаев, а её сохранение – в 44% случаев. 

0.4

0.3

0.5

0

2

1

0
0 20 40 60

t [ч]

m
ax

u 
[м

/с
]

с 
[м

/с
]

Fr

80

Рис. 3. Сверху вниз: фазовая скорость длинных ли-
нейных внутренних волн первой моды, максималь-
ная скорость стратифицированного течения и чис-
ло Фруда для данных наблюдений на станциях S06 
и INF. На нижней панели красным пунктиром пока-
зано критическое значение числа Фруда Fr = 1 
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Следует обратить внимание, что канониче-
ский критерий неустойчивости Ri < 0.25 осно-
ван на  предположении о  плоскопараллельном 
стратифицированном сдвиговом течении. Ла-
бораторные эксперименты и численное модели-
рование показали, что критерий для искривлён-
ного стратифицированного сдвигового течения 
при прохождении короткопериодных внутрен-
них волн может быть изменен на  Ri < 0.1 [6]. 

Вероятность выполнения этого условия в нашем 
случае P(Ri < 0.1) составляет всего 1.7% в нижнем 
слое и 1.2% – в слое над ним. Скорее всего, такие 
события связаны с волнами большой крутизны 
и амплитуды.

Основная проблема использования Ri для 
оценки параметров вертикального турбулент-
ного перемешивания по  данным мелкомас-
штабных измерений заключается в  его силь-
ной зависимости от  приращения глубины (Dz), 
на  котором рассчитываются соответствующие 
производные:

	 �
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или, другими словами, от  разрешающей спо-
собности приборов. В  работе [16] показано, 
что по  данным наблюдений в  Чёрном море ве-
роятность достижения критических значений 
параметра Ричардсона Ri < 0.25 экспоненци-
ально спадает с  ростом Dz, уменьшаясь от  20% 
при Dz = 0.5 м до 3% при Dz = 6 м. Это говорит 
о том, что в морских условиях выполнение кри-
терия неустойчивости чаще встречается на  ма-
лых масштабах. В нашем случае измерения тече-
ний проводились с вертикальным разрешением 
Dz = 6 м, поэтому мы  получаем лишь нижнюю 
оценку вероятности появления возможных зон 
неустойчивости.

ЗАКЛЮЧЕНИЕ

В настоящей работе проведён анализ дан-
ных одновременных измерений стратифи-
кации плотности и  придонных стратифици-
рованных течений в  Японском море (залив 
Посьета, залив Петра Великого) на  гидрофи-
зическом полигоне ТОИ ДВО РАН в  октябре 
2022 г. Результаты обработки натурных экспе-
риментальных данных показали, что за  пери-
од наблюдений течения около 25 часов имеют 
место достаточно протяжённые (до нескольких 
часов) временные интервалы, для которых ха-
рактерен сверхкритический режим, когда воз-
никает резонансное взаимодействие длинных 
внутренних волн со  сдвиговым потоком, что 
согласуется с  наблюдаемой активной гене-
рацией короткопериодных внутренних волн 
большой амплитуды в  эти периоды времени. 
Хотя рассматриваемые критерии (не)устойчи-
вости возникли при рассмотрении линейных 
уравнений и  при асимптотическом анализе 
гармонических волновых возмущений малой 
амплитуды, при приближении к  зонам и  сло-
ям, где эти критерии нарушаются, происходит 
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Рис. 4. Градиентное число Ричардсона Ri по данным 
наблюдений на  станциях S06 и  INF. Критические 
значения Ri = 0.25 и Ri = 1 показаны красным пунк-
тиром
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Рис. 5. Диаграмма рассеяния N2  – Sh2, рассчитан-
ная по данным наблюдений на станциях S06 и INF. 
Критические значения Ri = 0.25 и Ri = 1 показаны 
красным пунктиром и  штрих-пунктиром соответ-
ственно
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быстрая генерация старших вертикальных мод 
и  волновых гармоник, линейное описание 
здесь не  применимо даже для волн малой ам-
плитуды, и  для корректного описания проис-
ходящих процессов нужно решать полную си-
стему уравнений гидродинамики.
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The article presents some analysis results of in situ data of shear stratified flow measurements on the shelf of 
the Sea of Japan. The study of critical zones and layers is performed in terms of dimensionless Froude and 
Richardson parameters. It is shown that during the passage of high-intensity internal bores, sufficiently long 
(up to several hours) time intervals exist, which are characterized by a supercritical Froude regime, when 
active generation of short-period internal waves of large amplitude is predicted and occurs. The statistics 
of the Richardson number shows that with the lower probability estimate in the near-bottom layers during 
the observation period, the occurrence of shear instability is possible in 15% of cases, and its preservation 
is possible in 44% of cases.
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