RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

Vertical gradient of the geomagnetic field by multiple altitude aeromagnetic survey

PII
S2686739725010136-1
DOI
10.31857/S2686739725010136
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 520 / Issue number 1
Pages
124-128
Abstract
Modern geophysical survey technologies are progressing fast. One notable milestone of this progress is substantial increase of georeferencing performance with benefits of advanced satellite radionavigation. This article delves into the advantages of employing multiple altitude (also referred to as multilevel) aeromagnetic measurements conducted using unmanned aerial vehicles for deriving vertical gradient. This approach contrasts with conventional methods that rely on the calculation of the corresponding transform of the anomalous magnetic field. A comparative analysis was conducted on two study areas, characterized by distinct magnetic anomalies. One region exhibited strong anthropogenic disturbances against a background of a relatively calm regional magnetic field, while the other demonstrated weaker anthropogenic anomalies. The comparison between the maps of the anomalous field gradient calculated directly and derived from multilevel survey in both regions underscores the potential benefits of straightforward gradient measurement methods.
Keywords
маловысотная аэромагнитная съёмка повысотная съёмка БВС БПЛА беспилотный аэромагнитный комплекс трансформация магнитного поля
Date of publication
06.11.2025
Year of publication
2025
Number of purchasers
0
Views
86

References

  1. 1. Prasad K. N. D., Pham L. T., Singh A. P. A Novel Filter “ImpTAHG” for Edge Detection and a Case Study from Cambay Rift Basin, India // Pure Appl. Geophys. 2022. № 179. P. 2351–2364.
  2. 2. Hood P. Gradient measurements in aeromagnetic surveying // Geophysics. 1965. № 30 (5). P. 891–902.
  3. 3. Блох Ю. И. Обнаружение и разделение гравитационных и магнитных аномалий. М.: Издательство МГГА, 2009. 80 с.
  4. 4. Соловьев А. А., Сидоров Р. В., Красноперов Р. И., Груднев А. А., Хохлов А. В. Новая геомагнитная обсерватория “Климовская” // Геомагнетизм и аэрономия. 2016. Т. 56. № 3. С. 365–379.
  5. 5. Kulüke C., Virgil C., Stoll J., Hördt A. A new system to measure the gradient vector of the magnetic field on unmanned aerial vehicles — data processing and field experiment // RAS Techniques and Instruments. April, 2022. V. 1. Iss. 1. P. 65–80.
  6. 6. Алёшин И. М., Соловьёв А. А., Алёшин М. И., Сидоров Р. В., Соловьёва Е. Н., Холодков К. И. Перспективы использования беспилотных летательных аппаратов в геомагнитных исследованиях // Наука и технологические разработки. 2019. Т. 98. № 3. С. 32–48. https://doi.org/10.21455/std2019.3-3
  7. 7. Walter C., Braun A., Fotopoulos G. High-resolution unmanned aerial vehicle aeromagnetic surveys for mineral exploration targets // Geophysical Prospecting. 2020. № 68. P. 334–349.
  8. 8. Чепиго Л. С. GravMagInv. Свидетельство о регистрации программы для ЭВМ RU 2022610137, 10.01.2022.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library