Президиум РАНДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

КРИСТАЛЛИЗАЦИЯ МОНОСУЛЬФИДНОГО ТВЁРДОГО РАСТВОРА ПРИ ПАРАМЕТРАХ АЛМАЗООБРАЗОВАНИЯ: ЭКСПЕРИМЕНТЫ В СИСТЕМЕ Fe-Ni-S

Код статьи
S30345065S2686739725020099-1
DOI
10.7868/S3034506525020099
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 520 / Номер выпуска 2
Страницы
257-264
Аннотация
Образцы моносульфидного твёрдого раствора (Mss) на основе α-NiS и FeS были получены при P = 7.0 ГПа и T = 900-1500°C с использованием предварительно синтезированных сульфидных соединений твердофазным методом при 400-600°С. Выделены структурно-текстурные характеристики образцов и определены параметры элементарных ячеек исследуемых сульфидов. Исходя из выявленных особенностей и составов сульфидных фаз построен фрагмент фазовой диаграммы в системе Fe-Ni-S, определено положение предполагаемых линий солидуса и ликвидуса. Согласно полученным результатам, в изученном диапазоне составов образуется непрерывная серия твёрдых растворов минералов (Mss). Прослежена эволюция состава моносульфидного твёрдого раствора и сульфидного расплава в условиях алмазной фации глубинности при изменении температуры. Предварительно оценены максимальные содержания Ni в сульфидных расплавах (до 58 мас. %), из которых могут кристаллизоваться минералы, найденные во включениях в природных алмазах перидотитовой ассоциации.
Ключевые слова
фазовые отношения сульфиды включения в алмазах высокие давления и температуры эксперимент
Дата публикации
28.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
58

Библиография

  1. 1. Harris J.W., Gurney J.J. Inclusions in diamond / In: The properties of diamond (ed. J. E. Field). London: Academ. Press. 1979. P. 555-591.
  2. 2. Ефимова Э.С., Соболев Н.В., Поспелова Л.П. Включения сульфидов в алмазах и особенности их парагенезиса // Записки минералогического общества. 1983. 3. С. 300-310.
  3. 3. Гаранин В.К. Минералогия кимберлитов и родственных им пород алмазоносных провинций России в связи с их генезисом и поисками. М.: МГУ, 2006.
  4. 4. Taylor L.A., Anand M. Diamonds: time capsules from the Siberian Mantle // Chemie der Erde. 2004. V. 64. P. 1-74.
  5. 5. Тэйлор Л.А., Ли Я. Включения сульфидов в алмазах не являются моносульфидным твердым раствором // Геология и геофизика. 2009. V. 50(12). P. 1547-1559.
  6. 6. Литвин Ю.А., Бутвина В.Г. Алмазообразующие среды в системе эклогит-карбонатит-сульфид-углерод по данным экспериментов при 6.0-8.5 ГПа // Петрология. 2004. Т. 12. № 4. С. 426-438.
  7. 7. Pal'yanov Yu.N., Borzdov Yu.M., Bataleva Yu.V., Sokol A.G., Pal'yanova G.A., Kupriyanov I.N. Reducing role of sulfides and diamond formation in the Earth's mantle // Earth Planet. Sci. Lett. 2007. V. 260. P. 242-256.
  8. 8. Литвин Ю.А., Бутвина В.Г., Бобров А.В., Жариков В.А. Первые синтезы алмаза в сульфид-углеродных системах: роль сульфидов в генезисе алмаза // ДАН. 2002. V. 382(1). P. 106-109.
  9. 9. Klein-BenDavid O., Logvinova A.M., Izraeli E., Sobolev N.V., Navon O. Sulfide melt inclusions in Yubileinaya (Yakutia) diamonds / 8th Int. In Kimber. Conf., Exten. Abstr. FLA_0111, Victoria, Canada. 2003.
  10. 10. Kemppinen L.I., Kohn S.C., Parkinson I.J., Bulanova G.P., Howell D., Smith C.B. Identification of molybdenite in diamond-hosted sulphide inclusions: Implications for Re-Os radiometric dating // Earth Planet. Sci Lett. 2018. V. 495. P. 101-111. https://doi.org/10.1016/j.epsl.2018.04.037
  11. 11. Logvinova A.M., Sharygin I.S. Second natural occurrence of KFeS2 (Hanswilkeite): An inclusion in diamond from the Udachnaya kimberlite pipe (Siberian Craton, Yakutia) //Minerals. 2023. V. 13(7). P. 874. https://doi.org/10.3390/min13070874
  12. 12. Bulanova G.P, Griffin W.L., Ryan C.G., Shestakova O.Y., Barnes S.J. Trace elements in sulfide inclusions from yakutian diamonds // Contrib to Mineral Petrol. 1996. V. 124. P. 111-125.
  13. 13. Sobolev N.V., Kaminsky F.V., Griffin W.L., Yefimova E.S., Win T.T., Ryan C.G., Botkunov A.I. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia // Lithos. 1997. V. 39(3-4). P. 135-157.
  14. 14. Deines P., Harris J.W. Sulfide inclusion chemistry and carbon isotopes of African diamonds // Geochim. Cosmochim. Acta. 1995. V. 59(15). P. 3173-3188.
  15. 15. Farquhar J., Wing B.A., McKeegan K.D., Harris J.W., Cartigny P., Thiemens M.H. Mass-Independent Sulfur of Inclusions in Diamond and Sulfur Recycling on Early Earth. Science. 2002. (1979). V. 298 (5602). P. 2369-2372.
  16. 16. Kitakaze A., Machida T., Komatsu R. (2016) Phase relations in the Fe-Ni-S system from 875°C to 650°C // Can. Mineral. 2016. V. 54(5). P. 1175-1186.
  17. 17. Sinyakova E.F., Kosyakov V.I. The section of the Fe-Ni-S phase diagram constructed by directional crystallization and thermal analysis // J Therm Anal Calorim. 2013. V. 111. P. 71-76. https://doi.org/10.1007/s10973-011-2181-6
  18. 18. Urakawa S., Someya K., Terasaki H., Katsura T., Yokoshi S., Funakoshi K., Utsumi W., Katayama Y., Sueda Y., Irifune T. Phase relationships and equations of state for FeS at high pressures temperatures and implications for the internal structure of Mars // Phys. Earth Planet. Int. 2004. V. 143(1-2). P. 469-479.
  19. 19. Zhang Z., Hastings P., Von der Handt A., Hirschmann M.M. Experimental determination of carbon solubility in Fe-Ni-S melts // Geochim. Cosmochim. Acta. 2018. V. 225. P. 66-79.
  20. 20. Брауэр Г. Руководство по неорганическому синтезу. М.: Мир, 1985. Т. 5. 360 c.
  21. 21. Литвин Ю.А. Физико-химические исследования плавления глубинного вещества Земли. М.: Наука, 1991. 311 c.
  22. 22. Бобров А.В., Литвин Ю.А. Перидотит-эклогит-карбонатитовые системы при 7.0-8.5 ГПа: концентрационный барьер нуклеации алмаза и сингенезис его силикатных и карбонатных включений // Геология и геофизика. 2009. Т. 50(12). С. 1571-1587.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека