RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

INTERNAL SOURCES OF CO DURING ANATEXIS UNDER CONDITIONS OF HIGH-TEMPERATURE METAMORPHISM (EXPERIMENTAL DATA)

PII
S30345065S2686739725020112-1
DOI
10.7868/S3034506525020112
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 520 / Issue number 2
Pages
271-278
Abstract
Partial melting experiments of garnet-two-mica schist containing 0-20 wt. % graphite were carried out at 900°C and 500 MPa. Experiments have shown that at all graphite contents (within the specified range), metapelite melts are formed by peritectic melting reactions of biotite, muscovite and partly quartz: Bt + Ms + Qz → Kfs + Spl(Hc) + oAm + Sil + Gl. The decreasing Fe/(Fe+Fe) ratio in Fe-Mg minerals with increasing graphite content reflects increasing reducing conditions. Oxygen released as a result of the oxidation-reduction reactions of iron reacts with graphite to form CO. It partially dissolves in the melt to form carbonate complexes of Ca, Mg, K and accompanies it in the form of a free fluid phase. Experiments demonstrate that graphite-bearing metapelites can serve as efficient internal sources of CO during high-temperature metamorphism.
Keywords
графит расплав метапелиты углекислый флюид включения эксперимент
Date of publication
29.12.2025
Year of publication
2025
Number of purchasers
0
Views
67

References

  1. 1. Nicoli G., Borghini A., Ferrero S. The carbon budget of crustal reworking during continental collision: Clues from nanorocks and fluid inclusions // Chemical Geology. 2022. V. 608. P. 121025. https://doi.org/10.1016/j.chemgeo.2022.121025
  2. 2. Cesare B. et al. Immiscibility between carbonic fluids and granitic melts during crustal anatexis: a fluid and melt inclusion study in the enclaves of the Neogene Volcanic Province of SE Spain //Chemical Geology. 2007. V. 237. №. 3-4. P. 433-449. https://doi.org/10.1016/j.chemgeo.2006.07.013
  3. 3. Whitney D.L. Origin of CO2-rich fluid inclusions in leucosomes from the Skagit migmatites, North Cascades, Washington, USA // Journal of Metamorphic Geology. 1992. V. 10. P. 715-725.
  4. 4. London D., VI G.B.M., Acosta-Vigil A. Experimental simulations of anatexis and assimilation involving metapelite and granitic melt // Lithos. 2012. V. 153. P. 292-307. https://doi.org/10.1016/j.lithos.2012.04.006
  5. 5. Митяев А.С., Сафонов О.Г., Варламов Д.А., ван Ринен Д. Д., Сердюк А.А., Аранович Л.Я. Частичное плавление бесплагиоклазового гранат-двуслюдяного метапелита как модель образования ультракалиевых кислых магм в условиях континентальной коры // ДАН. 2022. Т. 507. № 2. С. 95-103. https://doi.org/10.31857/S2686739722601703
  6. 6. Chappell B.W., Bryant C.J., Wyborn D. Peraluminous I-type granites // Lithos. 2012. V. 153. P. 142-153. https://doi.org/10.1016/j.lithos.2012.07.008
  7. 7. Frost B.R., Barnes C.G., Collins W.J. et al. A geochemical classification for granitic rocks // Journal of petrology. 2001. V. 42. №. 11. P. 2033-2048. https://doi.org/10.1093/petrology/42.11.2033
  8. 8. Koester E., Pawley A.R., Fernandes L.A. et al. Experimental melting of cordierite gneiss and the petrogenesis of syn- transcurrent peraluminous granites Brazil // J. Petrol. 2002. V. 43. P. 1595-1616. https://doi.org/10.1093/petrology/43.8.1595
  9. 9. Pichavant M., Montel J.M., Richard L.R. Apatite solubility in peraluminous liquids: Experimental data and an extension of the Harrison-Watson model // Geochimica et Cosmochimica Acta. 1992. V. 56. №. 10. С. 3855-3861. https://doi.org/10.1016/0016-7037 (92)90178-L
  10. 10. McMillan P.F. Water solubility // Rev. Mineral. 1994. V. 30. P. 131-156. https://doi.org/10.1515/9781501509674-010
  11. 11. McMillan P. Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy //American Mineralogist. 1984. V. 69. №. 7-8. P. 622-644.
  12. 12. Reich S., Thomsen C. Raman spectroscopy of graphite // Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 2004. V. 362. P. 2271-2288. https://doi.org/10.1098/rsta.2004.1454
  13. 13. Frezzotti M.L., Tecce F., Casagli A. Raman spectroscopy for fluid inclusion analysis // Journal of Geochemical Exploration. 2012. V. 112. P. 1-20. https://doi.org/10.1016/j.gexplo.2011.09.009
  14. 14. Wang X. et al. Raman spectroscopic measurements of CO2 density: Experimental calibration with high-pressure optical cell (HPOC) and fused silica capillary capsule (FSCC) with application to fluid inclusion observations // Geochimica et Cosmochimica Acta. 2011. V. 75. № 14. P. 4080-4093. https://doi.org/10.1016/j.gca.2011.04.028
  15. 15. Шмулович К.И., Шмонов В.М. Таблицы термодинамических свойств газов и жидкостей. М.: Изд-во стандартов, 1978. № 3.
  16. 16. Ni H., Keppler H. Carbon in silicate melts // Reviews in Mineralogy and Geochemistry. 2013. V. 75. №. 1. P. 251-287. https://doi.org/10.2138/rmg.2013.75.9
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library