- PII
- S30345065S2686739725030096-1
- DOI
- 10.7868/S3034506525030096
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 521 / Issue number 1
- Pages
- 78-86
- Abstract
- The analysis of the geochemical characteristics of the sediments of Lake Porthibol, located in the northern part of the Murmansk region, revealed elevated concentrations of Mo, U, Th, REEs, and other elements compared to the upper crust. For Mo, the highest concentration coefficient was established at 92.5. Additionally, the studied sediments showed 39–86 times exceeding concentrations of Mo compared to the background levels of the element in the sediments of the lakes of Karelia. Age assessment of the sediment core from Lake Porthibol indicated that the upper 9 cm of sediments formed over 165 years, with sedimentation rates varying from 0.6: mm/year. Considering that the highest concentrations of Mo (up to 137.1 mg/kg) in the sediment core from Lake Porthibol were found in deeper layers, the anthropogenic influence of the last three centuries could not have affected its elevated level. It is suggested that the main source of Mo in the sediments of the studied water body is the rocks of the Litsevsky ore district, where, in addition to the primary uranium mineralization, elevated concentrations of Mo (up to 600 mg/kg) have been established.
- Keywords
- молибден уран геохимические аномалии датирование по 210Pb донные отложения озёр Арктика
- Date of publication
- 13.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 44
References
- 1. Dauvalter V. Impact of mining and refining on the distribution and accumulation of nickel and other heavy metals in sediments of subarctic lake Kuctsjärvi, Murmansk region, Russia // Journal of Environmental Monitoring. 2003. V. 5. P. 210–215.
- 2. Slukovskii Z.I., Guzyva A.V., Dauvalter V.A., Udachi V.N., Denisov D.B. Uranium Anomalies in Recent Sediments of Lakes from the Northern Part of the Murmansk Region, Arctic // Geochemistry International. 2020. V. 58. No. 12. P. 1400–1404.
- 3. Kayauna T.B., Aghnaedea E.H., Ильченко B.J., Aegeouen A.A., Heppouw J.M., Ладина Л.М., Нишкина Е.А., Мокрушина O.J. Лицевский урановочный район. M.: Изд-во ГЕОС, 2021. 136 с.
- 4. Семенова Л.Р., Костин Д.А. Карта четвертичных отложений: R-(35)-37 (Мурманск). Государственная геологическая карта Российской Федерации (новая серия) / под ред. Лектовой В.Г. СПб.: ФГБУ “ВСЕГЕИ”, 1998.
- 5. Керт Г.М. Саамская топонимизация лексика. Петрозаводск: Карельский научный центр РАН, 2009. 178 с.
- 6. Moiseenko T.I., Gashkina N.A., Dinu M.I., Kremleva T.A., Khoroshavin V.Yu. Geochemical features of elements distributions in the lake waters of the arctic region // Geochemistry International. 2020. V. 58. No. 6. P. 613–623.
- 7. Dauvalter V.A., Rognerud S. Heavy metal pollution in sediments of the Pasvik River drainage // Chemosphere. 2001. V. 42. P. 9–18.
- 8. Slukovskii Z.I. Background concentrations of heavy metals and other chemical elements in the sediments of small lakes in the south of Karelia, Russia // Вестник МГТУ. 2020. Т. 23. № 1. P. 80–92.
- 9. Aliev R.A., Bobrov V.A., Kalmykov S.N., Melgunov M.S., Vlasova I.E., Shevchenko V.P., Novigatsky A.N., Lisitzin A.P. Natural and artificial radionuclides as a tool for sedimentation studies in the Arctic region // Journal of Radioanalytical and Nuclear Chemistry. 2007. V. 274. P. 315–321.
- 10. Meulepako H.H., Kokun O.B., Vezauna H.C., Kacamka H.E. Приледниковое озеро Бретьёрна (Западный Шпицберген): история формирования и современное осадконакопление // Лед и снег. 2023. Т. 63. № 3. С. 426–440.
- 11. Sanchez-Cabeza J.A., Ruiz-Fernández A.C. 210Pb sediment radiochronology: An integrated formulation and classification of dating models // Geochimica et Cosmochimica Acta. 2012. V. 82. P. 183–200.
- 12. Appleby P.G., Richardson N., Nolan P.J. 241Am dating of lake sediments // Hydrobiologia. 1991. V. 214. P. 35–42.
- 13. Mindrescu M., Nemeth A., Grádinaru I., Bihari A., Nemeth T., Fekete J., Bozsó G., Kern Z. Boliátia sediment record – chronology, microsedimentology and potential for a high resolution multimillennial paleoenvironmental proxy archive // Quaternary Geochronology. 2016. V. 32. P. 11–20.
- 14. Wedepohl K.H. The Composition of the Continental Crust // Geochimica et Cosmochimica Acta. 1995. V. 59. P. 1217–1232.
- 15. Pasteczna A., Bojakowska I., Nadlonek W. The Impact of Anthropogenic Factors on the Occurrence of Molybdenum in Stream and River Sediments of Central Upper Silesia (Southern Poland) // Environment and Natural Resources Journal. 2017. V. 28. P. 16–26.
- 16. Vahidipour M., Raetsi E., van der Zee S.E.A.T.M. Potentially toxic metals in sediments, lake water and groundwater of the Ramsar wetlands Bakhtegan–Tashk, south Iran: Distribution and source assessment // Environmental Technology & Innovation. 2022. V. 28. P. 102789.
- 17. Slukovskii Z., Medvedev M., Mitsukov A., Dauvalter V., Grigoriev V., Kudryavtzeva L., Elizarova I. Recent Sediments of Arctic Small Lakes (Russia): Geochemistry Features and Age // Environment Earth Science. 2021. V. 80. No. 302. P. 5–16.
- 18. Cook S. Distribution and dispersion of molybdenum in lake sediments adjacent to porphyry molybdenum mineralization, central British Columbia // Journal of Geochemical Exploration. 2000. V. 71. No. 1. P. 13–50.
- 19. Eusterhues K., Heinrichs H., Schneider J. Geochemical response on redox fluctuations in Holocene lake sediments, Lake Steisslingen, Southern Germany // Chemical Geology. 2005. V. 222. P. 1–22.
- 20. Wang C.-W., Liang C., Yeh H.-J. Aquatic acute toxicity assessments of molybdenum (+VI) to Daphnia magna // Chemosphere. 2016. V. 147. P. 82–87.