RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

FLUORIDE FLUIDS: SOLUBILITY OF NaFcr IN WATER AT TEMPERATURES OF 5–443°C AND THERMODYNAMIC PROPERTIES OF F⁻ AND NaFaq

PII
S30345065S2686739725030105-1
DOI
10.7868/S3034506525030105
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
87-92
Abstract
The solubility of NaF (villiaumite) in water was experimentally determined for the first time in a wide range of temperatures T = 5–443°C and pressures P = 1–1000 bar. At high TP-parameters, the solubility was 1.5–4 times lower than the values predicted by the SUPCRT97 thermodynamic database. Within the HKF model, the thermodynamic properties of NaF were estimated and the HKF parameters of the basic ion F⁻, necessary for describing its properties in the region of elevated (>100°C) temperatures, were significantly refined. The obtained experimental data allow to estimate the maximum possible level of fluorine concentration in hydrothermal alkaline fluids, which is determined by the solubility of NaF.
Keywords
растворимость флюиды фтор виллиомит комплексообразование гидротермальные растворы
Date of publication
25.11.2024
Year of publication
2024
Number of purchasers
0
Views
62

References

  1. 1. Zaraisky G.P., Korzhinskaya V.S., Kotova N.P. Experimental Studies of TaO and columbite-tantalite solubility in fluoride solutions from 300 to 550°C and 50 to 100 MPa // Miner. Petrol. 2010. V. 99. P. 287–300.
  2. 2. Salvi S., Fontan F., Monchoux P., Williams-Jones A.E., Moine B. Hydrothermal mobilization of high field strength elements in alkaline igneous systems: Evidence from the Tamazeght Complex (Morocco) // Econ. Geol. 2000. V. 95. P. 559–576.
  3. 3. Reynolds J.G., Belsher J.D. A Review of Sodium Fluoride Solubility in Water // J. Chem. Eng. Data. 2017. V. 62. № 6. P. 1743–1748.
  4. 4. Wagner W., Pruss A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 387–535.
  5. 5. Tanger J.C., Helgeson H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures; revised equations of state for the standard // American Journal of Science 1988. V. 288. P. 19–98.
  6. 6. Шваров Ю.В. Нсh: новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows // Геохимия. 2008. № 8. C. 898–903.
  7. 7. Helgeson H.C., Kirkham D.H., Flowers G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV. Calculation of activity coefficient, osmotic coefficients, and apparent modal and standard and relative partial modal properties to 600°C and 5 KB // Am. Jour. Sci. 1981. V. 291. P. 1249–1516.
  8. 8. Majer V., Obsil M., Hefter G. et al. Volumetric behavior of aqueous NaF and KF solutions up to 350°C and 30 MPa // J. Solution Chem. 1997. V. 26. P. 847–875.
  9. 9. Bandura A.V., Lvov S.N. The Ionization Constant of Water over Wide Ranges of Temperature and Density Special Collection: International Water Property Standards Crossmark: Check for Updates // J. Phys. Chem. 2006. V. 35. P. 15–30.
  10. 10. Johnson J.W., Oelkers E.H., Helgeson H.C. SUPCRT92: A software package for calculating the standard modal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C // Comp. Geosci. 1992. V. 18. P. 899–947.
  11. 11. Hayмов Г.Б., Рыжевич Б.Н., Ходаковский И.Л. Справочник термодинамических величин. М.: Атомиздат, 1971.
  12. 12. Глушко В.П. Термические константы веществ. Выпуск X. Ч. 1. М., 1981.
  13. 13. Robie R.A., Hemingway B.S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. U.S // Geological Survey Bulletin 2131, U.S. Government Printing Office, Washington, 1995.
  14. 14. Shvarov Yu.V. A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements // Appl. Geochem. 2015. V. 55. P. 17–27.
  15. 15. Равич М.И. Водно-солевые системы при повышенных температурах и давлениях. М.: Наука, 1974. C. 151.
  16. 16. Cox J.D., Wagman D.D., Medvedev V.A. CODATA Key values for thermodynamics. New York: Hemishere Publishing Corp., 1988.
  17. 17. Лукьянова Е.В., Зотов А.В. Определение константы ассоциации NaFaq в системе NaF–NaCl–HO при 25–75°C потенциометрическим методом // Физическая химия. 2017. Т. 91. № 4. C. 648–653.
  18. 18. Richardson C.K., Holland H.D. The solubility of fluorite in hydrothermal solutions, an experimental study // Geochim. Cosmochim. Acta. 1979. V. 43. P. 1313–1325.
  19. 19. Shock E.L., Sassani D.C., Willis M., Sverjensky D.A. Inorganic species in geologic fluids: Correlations among standard modal thermodynamic properties of aqueous ions and hydroxide complexes // Geochim. Cosmo. Acta. 1997. V. 61. № 5. P. 907–950.
  20. 20. Manohar S., Atkinson G. The Effect of High Pressure on the Ion Pair Equilibrium Constant of Alkali Metal Fluorides: A Spectrophotometric Study // J. Solution Chem. 1993. V. 22. № 10. P. 859–872.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library