RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

TWO TYPES OF SEISMIC ACTIVITY PRIOR THE 2006 ERUPTION OF ALASKA'S AUGUSTINE VOLCANO

PII
S30345065S2686739725030121-1
DOI
10.7868/S3034506525030121
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
98-106
Abstract
The changes in volcanic seismicity regimes on example of the 2006 eruption of the Augustine volcano in Alaska are analyzed in the paper. During the long-term volcanic swarm preceding the eruption, two processes with different seismicity regimes were identified. The first can be associated with general radial deformations caused by an increase in pressure in the underground magma pit; such a regime has a high value of the slope of the magnitude-frequency distribution and a low degree of clustering. The second process, presumably, can be associated with a dike intrusion and local destruction of rock under the pressure of the dike. This process has a slope parameter of the magnitude-frequency distribution close to 1 and shows a high level of clustering before the most significant events, which are followed by lulls.
Keywords
вулканическая сейсмичность группирование сейсмичности метод ближайшего соседа вулканические рои
Date of publication
05.12.2024
Year of publication
2024
Number of purchasers
0
Views
47

References

  1. 1. Sornette D., Helmstetter A. Endogeneous Versus Exogeneous Shocks in Systems with Memory // Phys. A: Statistical Mechanics and its Applications. 2003. V. 318. P. 577–591. https://doi.org/10.1016/S0378-4371 (02)01371-7
  2. 2. Traversa P., Grasso Jean-Robert. How is Volcano Seismicity Different from Tectonic Seismicity? // Bull. of the Seismological Society of America. 2010. V. 100. https://doi.org/10.1785/0120090214
  3. 3. Buurman H., West M.E. Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano: Chapter 2 in the 2006 eruption of Augustine Volcano, Alaska // U.S. Geological Survey, Professional Paper 1769. 2010. P. 41–57. https://doi.org/10.3133/pp17692
  4. 4. Jacobs K., Menutt S. Using seismic b-values to interpret seismicity rates and physical processes during the preeruptive earthquake swarm at Augustine Volcano 2005—2006 // US Geological Survey Professional Paper. 2010. P. 59–75.
  5. 5. Power J.A., Friberg P.A., Haney M.M., Parker T., Sühler S.D., Dixon J.P. A unified catalog of earthquake hypocenters and magnitudes at volcanoes in Alaska—1989 to 2018 // U.S. Geological Survey Scientific Investigations Report. 2019. 2019—5037. 17 p. https://doi.org/10.3133/sir20195037. Available at: https://pubs.usgs.gov/publication/sir20195037
  6. 6. Cervelli P.F., Fournier T., Freymueller J., Power J.A. Ground deformation associated with the precursory unrest and early phases of the January 2006 eruption of Augustine Volcano, Alaska // Geophys. Res. Lett. 2006. V. 33. L18304. https://doi.org/10.1029/2006GL027219
  7. 7. Zaliapin I., Gabrielov A., Keilis-Borok V.I., Wong H. Clustering analysis of seismicity and aftershock identification // Phys. Rev. Lett. 2008. V. 101. P. 018501. https://doi.org/10.1103/PhysRevLett.101.018501
  8. 8. Zaliapin I., Ben-Zion Y. Earthquake clusters in southern California I: Identification and stability // J. Geophys. Res. Solid Earth. 2013. V. 118. P. 2847—2864. https://doi.org/10.1002/jgrb.50179
  9. 9. Baiesi M., Paczuski M. Scale-free networks of earthquakes and aftershocks // Phys. Physical Rev. E // Statistical, nonlinear, and soft matter physics. 2004. V. 69. Iss. 066106. https://doi.org/10.1103/PhysRevE.69.066106
  10. 10. Gutenberg B., Richter C. Frequency of earthquakes in California // Nature. 1944. V. 156. P. 371–371.
  11. 11. Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophys. J. International. 2020. V. 222. Iss. 2. P. 1264–1269. https://doi.org/10.1093/gji/ggaa252
  12. 12. Mamowsuna C.J., Шебалин П.Н., Смирнов В.Б., Пономерев А.В., Малютин П.А. Параметры группирования событий акустической эмиссии в лабораторных экспериментах по разрушению горных пород // Физика Земли. 2024. № 5. С. 85–96.
  13. 13. Баранов С.В., Шебалин П.Н. Закономерности постсейсимических процессов и прогноз опасности сильных афтериноков. М.: РАН, 2019. 218 с.
  14. 14. Mignan A., Woessner J. Estimating the magnitude of completeness for earthquake catalogs // Community Online Resource for Statistical Seismicity Analysis. 2012. https://doi.org/10.5078/corssa-00180805. Available at http://www.corssa.org
  15. 15. Bender B. Maximum likelihood estimation of b values for magnitude grouped data // Bull. of the Seismological Society of America. 1983. V. 73. P. 831–851.
  16. 16. Grassberger P., Procaccia I. Characterization of Strange Attractors // Physical Review Letters. 1983. V. 50. No. 5. P. 346–349.
  17. 17. Frohlich C., Davis S.D. Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogues // Geophys. J. Int. 1990. V. 100. P. 19–32.
  18. 18. Narteau C., Shebalin P., Holschneider M. Temporal limits of the power law aftershock decay rate // J. Geophys. Res. 2002. V. 107(B12). P. 2359. https://doi.org/10.1029/20021B001868
  19. 19. Cоболев Г.А. Модель лавинно-неустойчивого трещинообразования – ЛНТ // Физика Земли. 2019. № 1. С. 166–179. https://doi.org/10.31857/S0002-333720191166-179
  20. 20. Helmstetter A., Sornette D. Foreshocks explained by cascades of triggered seismicity // J. Geophys. Res. 2003. V. 108(B10). P. 2457. https://doi.org/10.1029/20031B002409
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library