RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

ON AN IMPACT OF HORIZONTAL INHOMOGENEITY OF SEA SURFACE TEMPERATURE IN THE UPWELLING VICINITY ON THE TANGENTIAL WIND STRESS

PII
S30345065S2686739725030149-1
DOI
10.7868/S3034506525030149
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
110-115
Abstract
The influence of the horizontally – inhomogeneous ocean surface temperature (SST) field in the vicinity of a coastal upwelling (belonging to the Eastern boundary upwelling systems) on the regional characteristics of the wind stress field is analyzed. It is shown that the change in the turbulent regime of the near-surface boundary layer of the atmosphere during the transition from the upwelling region with a relatively low SST to a warmer offshore zone is the main mechanism determining the influence of spatial inhomogeneity of SST in the vicinity of upwelling on the tangential wind stress and its vorticity. It is concluded that modern satellite data and atmospheric re-analyses highly likely underestimate the magnitude of the vorticity of the tangential wind stress and its contribution to the total upward moving rates of the subsurface layers in the vicinity of upwellings of the type under consideration.
Keywords
океанические апвеллинги приводный ветер приводный пограничный атмосферный слой завихренность касательного напряжения трения ветра
Date of publication
25.11.2024
Year of publication
2024
Number of purchasers
0
Views
49

References

  1. 1. Полонский А.Б., Серебренников А.Н. Интенсификация крупномасштабных апвеллингов в Атлантическом и Тихом океанах при современных климатических условиях // Доклады РАН. 2020. Т. 492. № 2. С. 105–110.
  2. 2. Bakun A., Field D.B., Redondo-Rodriguez A. et al. Greenhouse Gas, Upwelling-Favorable Winds, and the Future of Coastal Ocean Upwelling Ecosystems // Global Change Biology. 2010. V. 16. № 4. P. 1213–1228. https://doi.org/10.1111/j.1365–2486.2009.02094.x
  3. 3. Polonsky A. The Ocean’s Role in Climate Change. Cambridge Scholars Publishing, Newcastle. UK. 2019. 294 p.
  4. 4. Seabra R., Varela R., Santos A.M. et al. Reduced Nearshore Warming Associated With Eastern Boundary Upwelling Systems // Front. Mar. Sci. 2019. V. 6. P. 104. https://doi.org/10.3389/fmars.2019
  5. 5. Varela R., Álvarez I., Santos F. et al. Has Upwelling Strengthened along Worldwide Coasts over 1982–2010? // Sci. Rep. 2015. V. 5. P. 10016. https://doi.org/10.1038/srep10016
  6. 6. Samelson R.M., O’Neill L.W., Chelton D.B. et al. Surface Stress and Atmospheric Boundary Layer Response to Mesoscale SST Structure in Coupled Simulations of the Northern California Current System // Monthly Weather Review. 2020. V. 148. P. 259–286. https://doi.org/10.1175/MWR-D-19-0200.1
  7. 7. Seo H., O’Neill L.W., Bourassa M.A. et al. Ocean Mesoscale and Frontal-Scale Ocean—Atmosphere Interactions and Influence on Large-Scale Climate: A Review // J. of Climate. 2023. V. 36. P. 1981–2013.
  8. 8. Chelton D.B., Schiax M.G., Freilich M.H. et al. Satellite measurements reveal persistent small-scale features in ocean winds // Science. 2004. V. 303. P. 978–983. https://doi.org/10.1175/JCLI-D-21-0982.1
  9. 9. Hashizume H., Xie S.-P., Fujiwara M. et al. Direct Observations of Atmospheric Boundary Layer Response to SST Variations Associated with Tropical Instability Waves over the Eastern Equatorial Pacific // J. of Climate. 2002. V. 15 (23). P. 3379–3393. https://doi.org/10.1175/1520-0442 (2002)0153379:DOOABL2.0.CO;2
  10. 10. Ekman V.W. On the influence of the Earth’s rotation on ocean currents // Arch. Math. Astron. Fysik. 1905. Bd. 2. H. 1/2. № 11. P. 1–52.
  11. 11. Akerblom F. Rechercher sur les courants le plus bas de l’atmosphère au-dessus de Paris. Nova Acta, Regie Societatis Scientarum // Upsala Ser. IV. 1908. V. 2. № 2. P. 203–251.
  12. 12. Полонский А.Б. Горизонтально-неоднородный деятельный слой океана и его моделирование. Обнинск: Изд-во ВНИИГМИ-МЦД, 1989. 234 с.
  13. 13. Bykov Ph.L., Gordin V.A. Complex turbulent exchange coefficient in Akerblom—Ekman model // Journal of Inverse and Ill-posed Problems. 2024. V. 32. № 2. P. 199–211. https://doi.org/10.1515/jiip-2021-0039
  14. 14. Мошин А.С., Яглом А.М. Статистическая гидромеханика. T. 2. M.: Наука, 1967. 720 с.
  15. 15. Mellor G.L., Durbin P.A. The structure and dynamics of the ocean surface mixed layer // J. Phys. Oceanogr. 1976. V. 5 (4). P. 718–728.
  16. 16. Mellor G.L., Yamada T. Development of a turbulent closure model for geophysical fluid problems // Rev. of Geophysics. 1982. V. 20. P. 851–875.
  17. 17. Emery W.J., Lee W.G., Magaard L. Geographic and Seasonal Distributions of Brent – Vaisala Frequency and Rossby Radii in the North Pacific and North Atlantic // J. Phys. Oceanog. 1984. V. 14 (2). P. 94–317.
  18. 18. Kara A.B., Wallcraft A.J., Barron C.N. et al. Accuracy of 10 m Wind Speeds from Satellites and NWP Products Near Land–Sea Boundaries // J. Geophys. Res. 2008. V. 113. Is. C10. https://doi.org/10.1029/2007JC004516
  19. 19. Hilburn K.A., Meissner T., Wentz F.J. et al. Ocean vector winds from WindSat two-look polarimetric radiances // IEEE Trans. Geosci. Remote Sens. 2016. V. 54. P. 918–931. https://doi.org/10.1109/TGRS.2015.2469633
  20. 20. Полонский А.Б., Серебренников А.Н. Долгопериодные тенденции интенсивности восточных пограничных апвеллинговых систем по различным спутниковым данным. Ч. 1: Атлантические апвеллинги / Исследования Земли из космоса. 2021. № 5. C. 31–45. https://doi.org/10.31857/S0205961421050079
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library