RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

EXTREME MAGNETIC STORM OF MAY 10–19, 2024: COUPLING BETWEEN NEUTRAL AND CHARGED COMPONENTS OF THE UPPER ATMOSPHERE AND THE EFFECT ON RADIO SYSTEMS

PII
S30345065S2686739725030161-1
DOI
10.7868/S3034506525030161
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
123-135
Abstract
Active exploration of space for communication, navigation, and Earth remote sensing in recent decades has drawn increased attention to the study of the Sun’s impact on the Earth and requires creating effective models for space weather forecast. Magnetic storms that produce disturbances in the ionosphere and atmosphere are the strongest manifestation of space weather. Among such events is the magnetic storm that started on May 10, 2024, during which the auroral oval reached 19° N. Over the past 20 years since the last magnetic storm of similar intensity was observed, new scientific facilities have been put into operation as part of the National Heliogeophysical Complex of the Russian Academy of Sciences. A huge decrease in the electron density (by a factor of five relative to the background level) and record-breaking airglow of the upper atmosphere (the atomic oxygen red line airglow exceeded 25 kR) compared to the strongest storms in solar cycle 23 were recorded. The combined optical and radio-physical measurements in Eastern Siberia, supported by data from global networks, demonstrated the correlation between the temperature increase in the upper atmosphere and a strong decrease in the ionospheric electron density at mid-latitudes due to increased recombination during the storm. Combined measurements from ionosonde and high-frequency radar networks have shown a significant deterioration in the conditions of radio wave propagation. The complementarity of the currently deployed scientific instruments opens up new opportunities for monitoring the state of the near-Earth space, as well as for studying and modeling dynamic processes during such extreme phenomena with unprecedented detail.
Keywords
магнитная буря ионосфера Национальный гелиогеофизический комплекс ионозонд радар некогерентного рассеяния интерферометр Фабри—Перо свечение атмосферы распространение радиоволн температура атмосферы
Date of publication
13.11.2024
Year of publication
2024
Number of purchasers
0
Views
64

References

  1. 1. Pilipenko V. Space weather impact on ground-based technological systems // Sol.-Terr. Phys. 2021. V. 7. № 3. P. 68-104. https://doi.org/10.12737/stp-73202106
  2. 2. Meng X., Tsurutani B.T., Mannucci A.J. The Solar and Interplanetary Causes of Superstorms (Minimum Dst ≤ -250 nT) During the Space Age // J. Geophys. Res. Space Phys. 2019. V. 124. № 6. P. 3926-3948. https://doi.org/10.1029/2018JA026425.
  3. 3. Wang C., Xu J., Liu L. et al. Contribution of the Chinese Meridian Project to space environment research: Highlights and perspectives // Sci. China Earth Sci. 2023. V. 66. № 7. P. 1423-1438. https://doi.org/10.1007/s11430-022-1043-3
  4. 4. Zherebtsov G.Complex of heliogeophysical instruments of new generation // Sol.-Terr. Phys. 2020. V. 6. № 2. P. 3-13. https://doi.org/10.12737/stp-62202001
  5. 5. Gonzalez W.D., Joselyn J.A., Kamide Y. et al. What is a geomagnetic storm? // J. Geophys. Res. Space Phys. 1994. V. 99. № A4. P. 5771-5792. https://doi.org/10.1029/93JA02867
  6. 6. Pi X., Mannucci A.J., Lindqwister U.J., Ho C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network // Geophys. Res. Lett. 1997. V. 24. № 18. P. 2283-2286. https://doi.org/10.1029/97GL02273
  7. 7. Jia H., Yang Z., Li B. ROTI-based statistical regression models for GNSS precise point positioning errors associated with ionospheric plasma irregularities // GPS Solut. 2024. V. 28. № 3. P. 105. https://doi.org/10.1007/s10291-024-01648-0
  8. 8. Reinisch B.W., Galkin I.A. Global Ionospheric Radio Observatory (GIRO) // Earth Planets Space. 2011. V. 63. № 4. P. 377-381. https://doi.org/10.5047/eps.2011.03.001
  9. 9. Vasilyev R., Artamonov M., Beletsky A. et al. Scientific goals of optical instruments of the National Heliogeophysical Complex // Sol.-Terr. Phys. 2020. V. 6. № 2. P. 84-97. https://doi.org/10.12737/stp-62202008
  10. 10. Vasilyev R., Artamonov M., Beletsky A. et al. Registering upper atmosphere parameters in East Siberia with Fabry-Perot Interferometer KEO Scientific “Arinae” // Sol.-Terr. Phys. 2017. V. 3. № 3. P. 61-75. https://doi.org/10.12737/stp-33201707
  11. 11. Ratovsky K.G., Medvedev A.V., Tolstikov M.V., Kushnarev D.S. Case studies of height structure of TID propagation characteristics using cross-correlation analysis of incoherent scatter radar and DPS-4 ionosonde data // Adv. Space Res. 2008. V. 41. № 9. P. 1454-1458. https://doi.org/10.1016/j.asr.2007.03.008
  12. 12. Themens D.R., Elvidge S., McCaffrey A. et al. The High Latitude Ionospheric Response to the Major May 2024 Geomagnetic Storm: A Synoptic View // Geophys. Res. Lett. 2024. V. 51. № 19. e2024GL111677. https://doi.org/10.1029/2024GL111677
  13. 13. Bilitza D., Pezzopane M., Truhlik V. et al. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark // Rev. Geophys. 2022. V. 60. № 4. P. 1-11. https://doi.org/10.1029/2022RG000792
  14. 14. Evans J.S., Correira J., Lumpe J.D. et al. GOLD Observations of the Thermospheric Response to the 10-12 May 2024 Gannon Superstorm // Geophys. Res. Lett. 2024. V. 51. № 16. e2024GL110506. https://doi.org/10.1029/2024GL110506
  15. 15. Zherebtsov G.A., Tashchilin A.V., Perevalova N.P., Ratovsky K.G., Medvedeva I.V. Modeling the Influence of Changes in the Parameters of a Neutral Atmosphere on the Ionospheric Electron Density // Dokl. Earth Sci. 2024. V. 517. № 2. P. 1371-1376. https://doi.org/10.1134/S1028334X2460227X
  16. 16. Подлесный А.В., Брынько И.Г., Березовский В.А., Киселёв А.М., Петухов Е.В. Многофункциональный ЛЧМ-ионозонд для мониторинга ионосферы // Гелиогеофизические Исследования. 2013. № 4. C. 24-31.
  17. 17. Berngardt O., Kurkin V., Kushnarev D. et al. ISTP SB RAS decameter radars // Sol.-Terr. Phys. 2020. V. 6. № 2. P. 63-73. https://doi.org/10.12737/stp-62202006
  18. 18. Bland E.C., Heino E., Kosch M.J., Partamies N. SuperDARN Radar-Derived HF Radio Attenuation During the September 2017 Solar Proton Events // Space Weather. 2018. V. 16. № 10. P. 1455-1469. https://doi.org/10.1029/2018SW001916
  19. 19. Ratovsky K.G., Klimenko M.V., Vesnin A.M., Belyuchenko K.V., Yasyukevich Y.V.Comparative Analysis of Geomagnetic Events Identified According to Different Indices // Bull.Russ. Acad. Sci. Phys. 2024. V. 88. № 3. P. 296-302. https://doi.org/10.1134/S1062873823705433
  20. 20. Mikhalev A.V., Beletsky A.B., Kostyleva N.V., Chernigovskaya M.A. Midlatitude auroras in the south of Eastern Siberia during strong geomagnetic storms on October 29-31, 2003 and November 20-21, 2003 // Cosm. Res. 2004. V. 42. № 6. P. 591-596. https://doi.org/10.1007/s10604-005-0006-8
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library