- PII
- S30345065S2686739725080055-1
- DOI
- 10.7868/S3034506525080055
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 523 / Issue number 2
- Pages
- 226-233
- Abstract
- A comprehensive study of graphite from the Pestpaksha deposit (Lapland Granulite Belt, Kola Region) has been conducted, including Raman-based temperature determination and carbon isotopic characterization. C and O isotopic compositions of carbonates from rocks adjacent to graphite ores have also been studied. The structural control of the graphite mineralisation indicates that it was crystallised from the fluid phase. The crystallization of graphite was found to have taken place at a temperature of about 600°C at the retrograde stage of the metamorphic event. Large variations in carbon isotopic composition (δC from –18.5‰ to –29.0‰) can be explained either by the mechanism of Rayleigh depletion of C-O-H fluid with a high CO fraction in a closed system relative to this fluid, or by mixing of carbon from two isotopically contrasting sources. These sources may be the C-poor methane-bearing fluids produced during degassing of metamorphic rocks and the anomalously enriched C carbonates (δC ~ +14‰) observed in this study, which are similar in isotopic characteristics to carbonate rocks of the Lomagundi-Jatulian event. In the Rayleigh depletion model, these specific rocks are considered to be the product of crystallization of the residual fluid. Irrespective of the formation model adopted, the available evidence suggests that Pestpaksha graphite inherited its isotopic signature (δC of about –25‰) from hydrocarbons and is most likely derived from a metamorphic event.
- Keywords
- графит рамановская спектроскопия геотермометрия изотопы углерода
- Date of publication
- 28.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 32
References
- 1. Simandl G.J., Paradis S., Akam C. Graphite deposit types, their origin, and economic significance / Symposium on Strategic and Critical Materials Proceedings (November 13–14, 2015). British Columbia Geological Survey Paper 2015-3. Eds. G.J. Simandl, M. Neetz. Victoria, British Columbia: British Columbia Ministry of Energy and Mines, 2015. P. 163–171.
- 2. Landis C.A. Graphitization of dispersed carbonaceous material in metamorphic rocks // Contributions to Mineralogy and Petrology. 1971. V. 30. № 1. P. 34–45. https://doi.org/10.1007/bf00373366
- 3. Pasteris J.D. Causes of the uniformly high crystallinity of graphite in large epigenetic deposits // Journal of Metamorphic Geology. 1999. V. 17. № 6. P. 779–787. https://doi.org/10.1046/j.1525-1314.1999.00231.x
- 4. Luque F.J., Huizenga J.-M., Crespo-Feo E., Wada H., Ortega L., Barrenechea J.F. Vein graphite deposits: geological settings, origin, and economic significance // Mineralium Deposita. 2013. V. 49. № 2. P. 261–277. https://doi.org/10.1007/s00126-013-0489-9
- 5. Luque F.J., Crespo-Feo E., Barrenechea J.F., Ortega L. Carbon isotopes of graphite: Implications on fluid history // Geoscience Frontiers. 2012. V. 3. № 2. P. 197–207. https://doi.org/10.1016/j.gsf.2011.11.006
- 6. Лохов К.И., Астафьев Б.Ю., Воинова О.А. Матуков Д.И., Антонов А.В., Прасолов Э.М., Прилепский Э.Б., Богомолов Е.С. Возраст и генезис раннедокембрийской графитовой минерализации Кольского полуострова // Региональная геология и металлогения. 2006. Т. 28. С. 89–99.
- 7. Волкова С.А., Ильичёва О.М., Кузнецов О.Б. Рентгенографическое изучение графитсодержащих пород рудопроявления Пестпакша и структурные особенности графита // Литология и полезные ископаемые. 2011. Т. 4. С. 407–413.
- 8. Korja A., Tuisku P., Pernu T., Karhu J.A. Field, petrophysical and carbon isotope studies on the Lapland Granulite Belt: implications for deep continental crust // Terra Nova. 1996. V. 8. № 1. P. 48–58. https://doi.org/10.1111/j.1365-3121.1996.tb00724.x
- 9. Астафьев Б.Ю., Воинова О.А., Лохов К.И., Матуков Д.И., Прасолов Э.М., Прилепский Э.Б., Богомолов Е.С. Возраст и генезис раннедокембрийской графитовой минерализации Лапландского пояса (Кольский полуостров) // Отечественная геология. 2006. № 4. С. 75–82.
- 10. Case G., Karl S.M., Regan S.P., Johnson C.A., Ellison E.T., Caine J.S., Holm‐Denoma C.S., Pianowski L.S., Benowitz J. Insights into the metamorphic history and origin of flake graphite mineralization at the Graphite Creek graphite deposit, Seward Peninsula, Alaska, USA // Mineralium Deposita. 2023. V. 58. № 5. P. 939–962. https://doi.org/10.1007/s00126-023-01161-3
- 11. Lünsdorf N.K., Dunkl I., Schmidt B., Rantitsch G., von Eynatten H. Towards a Higher Comparability of Geothermometric Data Obtained by Raman Spectroscopy of Carbonaceous Material. Part 2: A Revised Geothermometer // Geostandards and Geoanalytical Research. 2017. V. 41. № 4. P. 593–612. https://doi.org/10.1111/ggr.12178
- 12. Henry D.G., Jarvis I., Gillmore G., Stephenson M.H. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology // Earth-Science Reviews. 2019. V. 198. Art. № 102936. https://doi.org/10.1016/j.earscirev.2019.102936
- 13. Beyssac O., Goffé B., Chopin C., Rouzaud J.-N. Raman spectra of carbonaceous material in metasediments: a new geothermometer // Journal of Metamorphic Geology. 2002. V. 20. № 9. P. 859–871. https://doi.org/10.1046/j.1525-1314.2002.00408.x
- 14. Sauerer B., Craddock P.R., Aljohani M.D., Alsamadony K., Abdallah W. Fast and accurate shale maturity determination by Raman spectroscopy measurement with minimal sample preparation // International Journal of Coal Geology. 2017. V. 173. P. 150–157. https://doi.org/10.1016/j.coal.2017.02.008
- 15. Wopenka B., Pasteris J.D. Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy // American Mineralogist. 1993. V. 78. № 5–6. P. 533–557.
- 16. Ray J.S. Carbon isotopic variations in fluid‐deposited graphite: evidence for multicomponent Rayleigh isotopic fractionation // International Geology Review. 2009. V. 51. № 1. P. 45–57. https://doi.org/10.1080/00206810802625057
- 17. Rumble D., Hoering T.C. Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A // Geochimica et Cosmochimica Acta. 1986. V. 50. № 6. P. 1239–1247. https://doi.org/10.1016/0016-7037 (86)90407-2
- 18. Hodgskiss M.S.W., Crockford P.W., Turchyn A.V. Deconstructing the Lomagundi-Jatuli Carbon Isotope Excursion // Annual Review of Earth and Planetary Sciences. 2023. V. 51. № 1. P. 301–330. https://doi.org/10.1146/annurev-earth031621-071250