RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

OLIVINE FROM NAMUAIY PIPE AILLIKITE, KOLA ALKALINE PROVINCE: THE PRIMARY MELT EVOLUTION AND RELATION TO KIMBERLITE MAGMATISM

PII
S30345065S2686739725080087-1
DOI
10.7868/S3034506525080087
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 2
Pages
252-261
Abstract
This study presents petrographic and mineral chemical data for olivine in aillikites from the Namuaiy pipe intruded into the Khibiny Massif, the Kola Alkaline Carbonatite Province. Two distinct olivine populations are identified: phenocrysts and xenocrysts. The phenocrysts crystallized from the aillikite melt, whereas the xenocrysts were entrained from the mantle substrate. Xenocrysts are characterized by high Mg# (0.89–0.91) and elevated concentrations of Ni and Ti, and are compositionally similar to kimberlitic olivines, but differ from them by significantly higher Ca contents. Elevated CaO concentrations in olivines from the aillikites of the Namuaiy pipe may reflect differences in the metasomatic processing of the mantle source (carbonate or aqueous fluid) or the intensity of its lherzolitization. The differences in the evolutionary trends of olivines from aillikites and kimberlites are caused by the assimilation of lithospheric material (mainly orthopyroxene) during the ascent of kimberlitic melts.
Keywords
оливин айликит эволюция щёлочно-ультрамафических расплавов мантийный источник кимберлиты
Date of publication
05.05.2025
Year of publication
2025
Number of purchasers
0
Views
28

References

  1. 1. Tappe S., Steenfelt A., Heaman L.M., Simonetti A. The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite–kimberlite relation­ships // Lithos. 2009. 112. 385–399.
  2. 2. Nosova A.A., Sazonova L.V., Kargin A.V., Smirnova M.D., Lapin A.V., Shcherbakov V.D. Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre- and post-trap ail­likites // Contributions to Mineralogy and Petrology. 2018. 173. https://doi.org/10.1007/s00410-018-1480-3
  3. 3. Vozniak A.A., Kopylova M.G., Peresetskaya E.V., Nosova A.A., Sazonova L.V., Anosova M.O. Olivine in lamprophyres of the Kola Alkaline Province and the magmatic evolution of olivine in carbonate melts // Lithos. 2023. 448–449. https://doi.org/10.1016/j.lithos.2023.107149
  4. 4. Arzamastsev A.A., Arzamastseva L.V., Bea F., Mon­tero P. Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series: LA-ICP-MS data for the magmatic provinces of northeastern Fennoscandia and Germany // Petrology. 2009. 17. 46–72.
  5. 5. Арзамасцев А.А., Беляцкий Б.В., Травин А.В., Арзамасцева Л.В., Царев С.E. Дайковые породы в Хибинском массиве: связь с плутоническими сериями, возраст, характеристика мантийных источников // Петрология. 2005. 13(3). 1–23.
  6. 6. Шайхутдинова Д.Р., Сазонова Л.В., Лебедева Н.М., Носова А.А., Каргин А.В., Арзамасцев А.А., Ковач В.П. Поздний этап палеозойского магматизма Кольской щелочной провинции: особенности формирования трубки взрыва лампрофиров горы Намуайв (Хибины) // Петрология. 2025. № 4. (в печати).
  7. 7. Sindern S., Zaitsev A.N., Demény A., Bell K., Chakmouradian A.R., Kramm U., Moutte J., Rukhlov A.S., Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibina com­plex (Kola, Russia) – Isotope constraints on genesis and small-scale mantle sources // Mineralogy and Petrology. 2004. 80. 215–239. https://doi.org/10.1007/s00710-003-0016-2
  8. 8. Beard A.D., Downes H., Mason P.R.D., Vetrin V.R. Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths // Lithos. 2007. 94. 1–24. https://doi.org/10.1016/j.lithos.2006.02.002
  9. 9. Zhang Y., Namur O., Li W., Shorttle O., Gazel E., Thy P., Grove T.L., Charlier B. An extended calibration of the olivine-spinel aluminum exchange thermometer: Application to the melting conditions and mantle lithologies of large igneous provinces // Journal of Petrology. 2023. 64(11), egad077 https://doi.org/10.1093/petrology/egad077/7306866
  10. 10. Mallmann G., O’Neill H.S.C. Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt // Journal of Petrology. 2013. 54. 933–949. https://doi.org/10.1093/petrology/egt001
  11. 11. Ziberna L., Nimis P., Kuzmin D., Malkovets V.G. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. American Mineralogist. 2016. 101. 2222–2232. https://doi.org/10.2138/am 2016-5540
  12. 12. Bussweiler Y., Brey G.P., Pearson D.G., Stachel T., Stern R.A., Hardman M.F., Kjarsgaard B.A., Jackson S.E. The aluminum-in-olivine thermometer for mantle peridotites – Experimental versus empirical calibration and potential applications // Lithos. 2017. 272–273. 301–314. https://doi.org/10.1016/j.lithos.2016.12.015
  13. 13. Pilbeam L.H., Nielsen T.F.D., Waight T.E. Digestion Fractional Crystallization (DFC): an Important Process in the Genesis of Kimberlites. Evidence from Olivine in the Majuagaa Kimberlite, Southern West Greenland // Journal of Petrology. 2013. 54. 1427–1453. https://doi.org/10.1093/petrology/egt016
  14. 14. Danyushevsky L.V., Plechov P. “Petrolog3: Integrated software for modeling crystallization processes // Geochem. Geophys. Geosyst. 2011. 12. https://doi.org/10.1029/2011GC003516
  15. 15. Koshlyakova A.N., Sobolev A.V., Krasheninnikov S.P., Batanova V.G., Borisov A.A., Ni partitioning between olivine and highly alkaline melts: an experimental study // Chem. Geol. 2022. 587. 120615. https://doi.org/10.1016/j.chemgeo.2021.120615
  16. 16. Gavrilenko M., Herzberg C., Vidito C., Carr M.J., Tenner T., Ozerov A. A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zo­ne Magma­tism // Journal of Petrology. 2016. 57. 1811–1832. https://doi.org/10.1093/petrology/egw062
  17. 17. Nosova A.A., Kopylova M.G., Sazonova L.V., Vozniak A.A., Kargin A.V., Lebedeva N.M., Volkova G.D., Peresetskaya E.V. Petrology of lamprophyre dykes in the Kola Alkaline Carbonatite Province (N Euro­pe) // Lithos. 2021. 398–399. 106277. https://doi.org/10.1016/j.lithos.2021.106277
  18. 18. Kargin A.V. Multistage Mantle Metasomatism during the Generation of Kimberlite Melts: Evidence from Mantle Xenoliths and Megacrysts of the Grib Kimberlite, Arkhangelsk, Russia // Petrology. 2021. 29. 227–255. https://doi.org/10.1134/S0869591121030024
  19. 19. Howarth G.H., Giuliani A., Soltys A., Bussweiler Y. Compositional Variations in Primitive Kimberlite Melts and Entrained Mantle Cargo from a Global Survey of Trace Element Compositions in Kimberlite Olivine // Journal of Petrology. 2022. 63. https://doi.org/10.1093/petrology/egac062
  20. 20. Сазонова Л.В., Носова А.А., Каргин А.В., Борисовский С.Е., Третяченко В.В., Абазова З.М., Грибань Ю.Г. Оливин кимберлитов трубок Пионерская и им. В. Гриба (Архангельская алмазоносная провинция): типы, состав, происхождение // Петрология. 2015. 23. 251–284. https://doi.org/10.7868/s086959031503005x
  21. 21. Giuliani A., Gies N.B., Faccanoni A., Hermann J., De Hoog J.C.M., Padrón-Navarta J.A., Cayzer N., Schmidt M.W. Hydrogen Zoning in Olivine from Kimberlites Based on Coupled FTIR and SIMS Analyses: Significance for H2O Distribution in the Lithospheric Mantle and H2O Concentrations in Kimberlite Melts // Journal of Petrology. 2025. 66. https://doi.org/10.1093/petrology/egaf018
  22. 22. Ponomarev G., Vladykin N., Radomskaya T. Genetic Role of Calcium Content in Olivine Crystals of Ultramafic and Mafic Rocks // American Journal of Physical Chemistry. 2020. 9. 16. https://doi.org/10.11648/j.ajpc.20200902.11
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library