RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

PECULIARITIES OF THE MID-LITHOSPHERIC DISCONTINUITY IN THE EAST-EUROPEAN CRATON COLLISION ZONE

PII
S30345065S2686739725080129-1
DOI
10.7868/S3034506525080129
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 2
Pages
287-291
Abstract
The receiver function method was used to construct kinematic models of the collision zone of the central part of the East European craton based on data from five broadband seismic stations. A layer of lower velocities with upper boundary at a depth of about 90 km was identified in the upper mantle of the Sarmatia protocraton, marking a mid-lithospheric discontinuity (MLD). The thickness of the identified layer is about 50 km. According to data from stations located in the collision zone, MLD is not detected.
Keywords
Сарматия Восточно-Европейская платформа поперечные волны верхняя мантия MLD
Date of publication
05.05.2025
Year of publication
2025
Number of purchasers
0
Views
22

References

  1. 1. Yang Y., Ritzwoller M., Lin F., Moschetti M., Shapiro N. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography // Journal of Geophysical Research. 2008. V. 113. B12310. https://doi.org/10.1029/2008JB005833
  2. 2. Thybo H., Bulut N., Grund M., Mauerberger A., Makushkina A., Artemieva I., Balling N., Gudmundsson O., Maupin V., Ottemøller L., Ritter J., Tilmann F. Scan-Array – A Broadband Seismological Experiment in the Baltic Shield // Seismological Research Letters. 2021. V. 92. № 5. P. 2811–2823. https://doi.org/10.1785/0220210015
  3. 3. Bogdanova S.V., Gorbatschev R., Garetsky R.G. Europe/East European Craton / In: Reference Module in Earth Systems and Environmental Sciences. Elsevier, 2016. P. 1–18.
  4. 4. Минц М.В., Сулейманов А.К., Бабаянц П.С., Белоусова Е.А., Блох Ю.И., Богина М.М., Буш В.А., Докукина К.А., Заможняя Н.Г., Злобин В.Л., Каулина Т.В., Конилов А.Н., Михайлов В.О., Натапов Л.М., Пийп В.Б., Ступак В.М., Тихоцкий С.А., Трусов А.А., Филиппова И.Б., Шур Д.Ю. Глубинное строение, эволюция и полезные ископаемые раннедокембрийского фундамента Восточно-Европейской платформы: Интерпретация материалов по опорному профилю 1-ЕВ, профилям 4В и ТАТСЕЙС: В 2 т. + 1 папка-комплект цветных приложений. М.: Геокарт; ГЕОС, 2010. Т. 1. 408 с. Т. 2. 400 с.
  5. 5. Гоев А.Г., Косарев Г.Л., Ризниченко О.Ю., Санина И.А. Скоростная модель западной̆ части Волго-Уралии методом функции приемника // Физика Земли. 2018. № 6. C. 154–169.
  6. 6. Fu H.Y., Li Z.H., Chen L. Continental mid-lithosphere discontinuity: A water collector during craton evolution // Geophysical Research Letters. 2022. V. 49. e2022GL101569. https://doi.org/10.1029/2022GL101569
  7. 7. Wang Z., Kusky T. The importance of a weak mid-lithospheric layer on the evolution of the cratonic lithosphere // Earth-Science Reviews. 2019. V. 190. P. 557–569. https://doi.org/10.1016/j.earscirev.2019.02.010
  8. 8. Винник Л.П. Сейсмология приемных функций // Физика Земли. 2019. № 1. С. 16–27. https://doi.org/10.31857/S0002333720191162-27
  9. 9. Алешин И.М. Построение решения обратной задачи по ансамблю моделей на примере инверсии приемных функций // Докл. РАН. Науки о Земле. Т. 496. № 1. 2021. С. 63–66. https://doi.org/10.31857/S2686739721010047
  10. 10. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes. 3rd Ed.: The Art of Scientific Computing. New York: Cambridge University Press, 2007.
  11. 11. Artemieva I.M. The continental lithosphere: Reconciling thermal, seismic, and petrologic data // Lithos. 2009. V. 109. No. 1–2. P. 23–46. https://doi.org/10.1016/j.lithos.2008.09.015
  12. 12. Boyce A., Bodin T., Durand S., Soergel D., Debayle E. Seismic evidence for craton formation by underplating and development of the MLD // Geophysical Research Letters. 2024. V. 5. e2023GL106170. https://doi.org/10.1029/2023GL106170
  13. 13. Kennett B.L.N., Engdahl E.R. Traveltimes for global earthquake location and phase identification // Geophys. J. Int. 1991. V. 105. P. 429–465. https://doi.org/10.1111/j.1365–246X.1991.tb06724.x
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library