RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

TRACES OF PELAGIC BIOTA IN SILICEOUS ROCKS OF THE UPPER CAMBRIAN OF SOUTHERN KAZAKHSTAN

PII
S30345065S2686739725080136-1
DOI
10.7868/S3034506525080136
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 2
Pages
292-297
Abstract
The lower part of the Burubaytal Formation that encompass the Upper Cambrian and Lower Ordovician cherts in the in the Southwestern Balkhash region of Southern Kazakhstan is enriched by organic detritus. This detritus consists of numerous fecal pellets composed of para- and protoconodont elements, as well as spherical acritarchs, individual acritarchs, and conodont elements. Additionally, there are scattered carbonaceous, finely dispersed organic matter and clumps of this matter. These findings indicate a significant contribution of pelagic organisms in the formation of a vertical flow of organic matter from the pelagic zone to the deep-sea bottom and an episode of increased burial of organic matter at the beginning of the Batyrbaian Stage in the Late Cambrian corresponding to the TOCE (Top of Cambrian Excursion) isotopic event.
Keywords
глубоководные отложения органический детрит фекальные пеллеты конодонты акритархи копеподы поздний кембрий захоронение изотопное событие пелагиаль
Date of publication
28.04.2025
Year of publication
2025
Number of purchasers
0
Views
28

References

  1. 1. Turner J.T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms // Aquatic Microbial Ecology. 2002. V. 27. C. 57–102.
  2. 2. Riser C.W., Wassmann P., Olli K., Pasternak A., Arashkevich E. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea // Journal of Marine Systems. 2002. 38. P. 175–188.
  3. 3. Whalen Ch. D., Briggs D.E.G. The Palaeozoic colonization of the water column and the rise of global nekton // Proceeding of the Royal Society. Biol. Sci. 2018. V. 285. 20180883
  4. 4. Habib D., Miller J.A. Dinoflagellate species and organic facies evidence of marine transgression and regression in the Atlantic coastal plain // Palaeo­geo­graphy, Palaeoclimatology, Palaeoecology. 1989. V. 74. P. 23–47.
  5. 5. Porter K.G., Robbins E.I. Zooplankton fecal pellets link fossil fuel and phosphate deposits // Science. 1981. V. 212. No. 4497.
  6. 6. Maeda H., Tanaka G., Shimobayashi N., Ohno T., Matsuoka H. Cambrian Orsten Lagerstätte from the Alum Shale Formations: fecal pellets as probable source of phosphorus preservation // Palaios. 2011. V. 26. P. 225–231.
  7. 7. Grasby S.E., Ardakani O., Liu X., Bond D., Wignall P., Strachan L. Marine snowstorm during the Permian–Triassic mass extinction // Geology. 2024. V. 52. P. 120–124.
  8. 8. Susumu H., Roman M.R. Marine copepod fecal pellets: Production, preservation and sedimentation // Journal of Marine Research. 1978. V. 36 (1). P. 45–57.
  9. 9. Tolmacheva T., Popov L., Gogin I., Holmer L. Conodont biostratigraphy and faunal assemblages in radiolarian ribbon-banded cherts of the Burubaital Formation, West Balkhash Region, Kazakhstan // Geol. Mag. 2004. V. 141. No. 6. P. 699–715.
  10. 10. Толмачева Т.Ю. Биостратиграфия и биогеография конодонтов ордовика западной части Центрально-Азиатского складчатого пояса. СПб.: Изд-во ВСЕГЕИ, 2014. 315 с.
  11. 11. Tolmacheva T. Yu., Degtyarev K.E., Ryazantsev A.V. Ordovician conodont biostratigraphy, diversity and biogeography in deep-water radiolarian cherts from Kazakhstan // Palaeogeography, Palaeoclimatology, Palaeoecology. 2021. V. 578. P. 110572.
  12. 12. Tolmacheva T. Yu., Danelian T., Popov L.Е. Evidence for 15 m. y. of continuous deep-sea biogenic siliceous sedimentation in early Paleozoic oceans // Geology. 2001. V. 29. № 8. Р. 755–758.
  13. 13. Толмачева Т.Ю., Рязанцев А.В., Дегтярев К.Е., Никитина О.И. Отложения гидротермальных баритовых источников позднего кембрия – раннего ордовика в кремнистых толщах Южного Казахстана // ДАН. 2014. Т. 458. № 3. С. 318–322.
  14. 14. Lee B.S. Middle Cambrian (Upper Series 3) protoconodonts and paraconodonts from the Machari Formation at Eodungol Section, Yeongwol, Korea // Journal of Earth Science. 2013. V. 24. P. 157–169.
  15. 15. Iversen M.H., Poulsen L.K. Coprorhexy, coprophagy, and coprochaly in the copepods Calanus helgolandicus, Pseudocalanus elongatus, and Oithona si­milis // Marine Ecology Progress Series. 2007. V. 350. P. 79–89.
  16. 16. Wallet E., Slater B.J., Willman S. The palaeobiological significance of clustering in acritarchs: a case study from the early Cambrian of North Greenland // Palaeontology. 2024. V. 67. Part 5. № 4. P. 1–20.
  17. 17. Collette J., Hagadorn J. Early evolution of Phyllocarid arthropods: phylogeny and systematics of Cambrian-Devonian archaeostracans // Journal of Paleontology. 2010. № 84. C. 795–820.
  18. 18. Yoon W.D.., Kim S.K., Han K.N. Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic // Marine Biology. 2001. V. 139. P. 923–928.
  19. 19. Cramer B.D., Jarvis I. Carbon isotope stratigraphy / In: Geologic Time Scale. Eds. F.M. Gradstein, J.G. Ogg, M.D. Schmitz, G.M. Ogg. 2020. Elsevier BV, 2020. pp. 309–343.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library