RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

SELECTIVE ABSORPTION IN THE VISIBLE SPECTRUM OF DUST HAZE OVER MIDDLE EAST IN SPRING 2022

PII
S30345065S2686739725030159-1
DOI
10.7868/S3034506525030159
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 521 / Issue number 1
Pages
116-122
Abstract
Based on monitoring data from AERONET stations in spring 2022, variations in the optical and microphysical characteristics of dust aerosol during a large-scale dust haze in the Middle East were analyzed. It was shown that the coarse fraction of dust aerosol dominates the particle size distribution, with a modal radius ranging from 1.70 to 2.95 μm. The imaginary part of the refractive index of dust aerosol particles reaches 0.042, and the single scattering albedo varies from 0.70 to 0.99. Selective absorption of dust aerosol at a wavelength of 675 nm was found to be associated with the presence of the mineral goethite in the dust aerosol particles.
Keywords
крупномасштабная пыльная мгла аэрозольная оптическая толщина пылевой аэрозоль
Date of publication
13.11.2024
Year of publication
2024
Number of purchasers
0
Views
49

References

  1. 1. Mahowald N., Albani S., Kok J.F., Engelstaedter S., Scanza R., Ward D.S., Flanner M.G. The size distribution of desert dust aerosols and its impact on the Earth system // Aeolian Research. 2014. V. 15. P. 53–71.
  2. 2. Kok J.F., Parteli E.J., Michaels T.I., Bou Karam D. The physics of wind blown sand and dust // Rep. Prog. Phys. 2012. V. 75. P. 1–119.
  3. 3. Sokolik I.N., Toon O.B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths // Journal of Geophysical Research: Atmospheres. 1999. V. 104. № D8. P. 9423–9444.
  4. 4. Miller R., Tegen I., Periwitz J. Surface radiative forcing by soil dust aerosols and the hydrologic cycle // J. Geophys. Res. 2004. V. 109. D. 04203.
  5. 5. Balkanski Y., Schutz M., Claquin T., Guibert S. Re-evaluation of mineral aerosol radiative forcings suggest a better agreement with satellite and AERONET data // Atmos. Chem. Phys. 2007. V. 7. P. 81–95.
  6. 6. Mather B.A., Prospero J.M., Mackie D., Galero D., Hesse P.P., Balkanski Y. Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum // Earth Sci. Rev. 2010. V. 99. P. 61–97.
  7. 7. Brunekreef B., Holgate S.T. Air Pollution and Health // Lancet. 2002. V. 360. P. 1233–1242.
  8. 8. Morman S.A., Plumlee G.S. The role of airborne mineral dusts in human disease // Aeolian Research. 2013. V. 9. P. 203–212.
  9. 9. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis I.P., Setzer A., Vermote E., Reagan J.A., Kaufman Y.J., Nakajima N., Lavenu F., Jakowiak L., Smirnov A. AERONET — A federated instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66. No. 1. P. 1–16.
  10. 10. Dubovik O., Smirnov A., Holben B.N., King M.D., Kaufman Y.J., Eck T.F., Slutsker I. Accuracy assessment of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105. P. 9791–9806.
  11. 11. Sinyuk A., Holben B.N., Eck T.F., Giles D.M., Slutsker I., Korkin S., Schafer J.S., Smirnov A., Sorokin M., Lyapustin A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2 // Atmos. Meas. Tech. 2020. V. 13. P. 3375–3411.
  12. 12. Kaufman Y.J., Tanre D., Dubovik O., Karnieli A., Remer L.A. Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing // Geophysical Research Letters. 2001. V. 28. No. 8. P. 1479–1482.
  13. 13. Arimoto R. Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition // Earth-Science Reviews. 2001. V. 54. No. 1–3. P. 29–42.
  14. 14. Alfaro S.C., Lafon S., Rajot J.L., Formenti P., Gaudichet A., Maillé M. Iron oxides and light absorption by pure desert dust: An experimental study // J. Geophys. Res. 2004. V. 109. D08208.
  15. 15. Lafon S., Sokolik I.N., Rajot J.L., Caquineau S., Gaudichet A. Characterization of iron oxides in mineral dust aerosols: Implications for light absorption // Journal of Geophysical Research. Atmospheres. 2006. V. 111. No. D21.
  16. 16. Salomonson V.V., Barnes W.L., Maymon P.W., Montgomery H.E., Ostrow H. MODIS, advanced facility instrument for studies of the Earth as a system // IEEE Trans. Geosci. Rem. Sens. 1989. V. 27. P. 145–153.
  17. 17. Gorchakov G.I., Datsenko O.I., Kopeikin V.M., Karpov A.V., Gushchin R.A., Gorchakova I.A., Mirsailov S.F., Ponomareva T.Ya. Dust haze over the North China plain // Atmospheric and Oceanic Optics. 2022. V. 35. No. 2. P. 125–132.
  18. 18. Gorchakov G.I., Kopeikin V.M., Gushchin R.A., Datsenko O.I., Ponomareva T.Y. Anomalous Selective Absorption of Smoke Aerosol during Forest Fires in Alaska in July–August 2019 // Izvestiya. Atmospheric and Ocean Physics. 2023. V. 59. No 6. P. 655–666.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library