- PII
- S30345065S2686739725030182-1
- DOI
- 10.7868/S3034506525030182
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 521 / Issue number 1
- Pages
- 142-147
- Abstract
- The process of wind and water erosion of soils is often considered as three successive stages: separation, transport and deposition of particles. This approach does not take into account the effect on erosion of organomineral soil gels, which cover and bind soil particles together. The aim of the work was to check the relationship between soil gels and stability of soils. The aim of the work was to verify the assumption about the effect of soil gels on the water stability and mechanical strength of soils. The method of determining the water stability of soils, scanning electron microscopy and determination of the strength of soil aggregates using vibrational sieving were used in the work. During the research, it was found that drying soils of natural humidity of various types in the air stream with a velocity of 2 m/s reduced their water stability by about 1.5 times compared with drying in standing air. To study air samples that affected the soil, it was bubbled through water. Examination of these samples using a scanning electron microscope showed that they contain fragments of soil gels and organic supramolecular formations (SMF). It was also found that SMF were blown not only from moist, but also air-dry soils. It is shown that the introduction of polyvinyl alcohol into soils strengthens gels and increases the mechanical strength of soil aggregates. Moreover, the effectiveness of the polymer on moist soils is higher than on air-dry soils.
- Keywords
- ветровая эрозия почв механическая прочность почвенных агрегатов гуминовые вещества повышение устойчивости почв к ветровой эрозии
- Date of publication
- 05.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 63
References
- 1. Jarrah M., Mayel S., Tatarko J., Funk R., Kuka K. A review of wind erosion models: Data requirements, processes, and validity // Catena. 2020. V. 187. P. 104388.
- 2. Garcia Ruiz J.M., Beguerda S., Lana-Renault N., Nadal-Romero E., Cerda A. Ongoing and emerging questions in water erosion studies // Land Degradation & Development. 2017. V. 28. № 1. P. 5–21.
- 3. Геноусов В.М., Глазунов Г.П. О единстве механизмов водной и ветровой эрозии почвы // Почвоведение. 2009. № 5. С. 598–605.
- 4. Zezin А.В., Mikheikin S.V., Rogacheva V.B., Zansokhova M.F., Sybachin A.V., Yaroslavov A.A. Polymeric stabilizers for protection of soil and ground against wind and water erosion // Advances in colloid and interface science. 2015. V. 226. P. 17–23.
- 5. Антипопов-Каранжев Н.Н., Келлерман В.В., Хан Д.В. О почвенном агрегате и методах его исследования. Л.: Изд-во АН СССР, 1948. 84 с.
- 6. Полш А.Ф. Органо-минеральные коллоиды в почве, их генезис и значение для корневого питания высших растений. М.: Изд-во АН СССР, 1958. 52 с.
- 7. Angelico R., Colombo C., Di Iorio E., Brintcky M., Faji J. Conte P. Humic substances: from supramolecular aggregation to fractal conformation – Is there time for a new paradigm? // Applied Sciences. 2023. V. 13. № 4. P. 2236.
- 8. Ostenberg R., Mortensen K. Fractal dimension of humic acids. A small angle neutron scattering study // European Biophysics J. 1992. V. 21. № 3. P. 163–167.
- 9. Senesi N., Rizzi F.R., Dellino P., Acquafredda P. Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and Surfaces A. // Physicochemical and Engineering Aspects. 1997. V. 127. Iss. 1–3. P. 57–68.
- 10. Senesi N., Rizzi F.R., Dellino P., Acquafredda P. Fractal dimension of humic acids in aqueous suspension as a function of pH and time // Soil Science Society of Am. J. 1996. V. 60. № 6. P. 1613–1678.
- 11. Fasurova N., Cechlovska H., Kucerik J. A comparative study of South Moravian lignite and standard HISS humic acids’ optical and colloidal properties // Petroleum and Coal. 2006. V. 48. № 2. P. 24–32.
- 12. Philippe A., Schaumann G.E. Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review // Environmental science & technology. 2014. V. 48. № 16. P. 8946–8962.
- 13. Anderson E., Meklesh V., Gentile L., Bhattacharya A., Stålbrand H., Tunlid A., Persson P., Olsson U. Generation and properties of organic colloids extracted by water from the organic horizon of a boreal forest soil // Geoderma. 2023. V. 432. P. 116386.
- 14. Федонов Г.Н., Тарасенко Д.А., Демидов В.В., Горенски И.В., Егорова М.Н., Сухарев А.И. Взаимосвязь механизмов формирования эрозионной стойкости и водоустойчивости почв // Вестник Московского Университета. Серия 17. Почвоведение. 2024. Т. 79. № 3. С. 80–87.
- 15. Федонов Г.Н., Шеш Е.В., Ушкова Д.А. Салимареев О.А., Горенски И.В., Попалов Д.И. Надмолекулярные образования из молекул гуминовых веществ и их фрактальная организация // Почвоведение. 2023. № 8. С. 903–910.
- 16. Lyu X., Li X., Wang H., Gong J., Li S., Dou H., Dang D. Soil wind erosion evaluation and sustainable management of typical steppe in Inner Mongolia, China // Journal of Environmental Management. 2021. V. 277. P. 111488.
- 17. Segovia C., Gómez J.D., Gallardo P., Lozano F.J., Asensio C. Soil nutrients losses by wind erosion in a citrus crop at southeast Spain // Eurasian Soil Science. 2017. V. 50. P. 756–763.
- 18. Yan Y., Xin X., Xu X., Wang X., Yang G., Yan R., Chen B. Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of northern China // Plant and soil. 2013. V. 369. P. 585–598.
- 19. Mirian I., Pahlavamavi A., Khalilimoghadam B. Effects of Land Use Change on Soil Wind Erodibility in the Horul Azim Marshland // Eurasian Soil Science. 2024. V. 57. № 4. P. 677–691.
- 20. Ушкова Д.А., Горенски И.В., Федонов Г.Н., Батырев Ю.П. Уточнение представлений о механизме водоустойчивости почв // Лесной вестник. 2024. Т. 28. № 3. С. 78–86.