- Код статьи
- S30345065S2686739725080087-1
- DOI
- 10.7868/S3034506525080087
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 523 / Номер выпуска 2
- Страницы
- 252-261
- Аннотация
- В работе представлены результаты исследования оливинов из айликитов трубки взрыва Намуайв, прорывающей Хибинский массив в Кольской щелочной провинции. Среди оливинов выделены фенокристы и ксенокристы. Фенокристы кристаллизовались из первичного айликитового расплава. Ксенокристы, характеризующиеся высокой Mg# и высоким содержанием Ni и Ti, по составу близки оливинам из кимберлитов, но отличаются от них повышенными концентрациями Ca. Сходство оливинов из айликитов трубки Намуайв с оливинами кимберлитов соседней Архангельской алмазоносной провинции проявляется в высоких значениях Mg# (0.89–0.91), концентраций Ni и Ti, что указывает на близость исходных расплавов для айликитов и кимберлитов. Однако повышенные концентрации Ca в оливинах из айликитов трубки Намуайв могут отражать различия в метасоматической проработке мантийного источника (карбонатный или водный флюид) или интенсивности процессов его дерцолитизации. Различия в эволюционных трендах оливинов айликитов и кимберлитов обусловлены ассимиляцией литосферного материала, преимущественно ортопироксена при подъёме кимберлитовых расплавов.
- Ключевые слова
- оливин айликит эволюция щёлочно-ультрамафических расплавов мантийный источник кимберлиты
- Дата публикации
- 05.05.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 27
Библиография
- 1. Tappe S., Steenfelt A., Heaman L.M., Simonetti A. The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite–kimberlite relationships // Lithos. 2009. 112. 385–399.
- 2. Nosova A.A., Sazonova L.V., Kargin A.V., Smirnova M.D., Lapin A.V., Shcherbakov V.D. Olivine in ultramafic lamprophyres: chemistry, crystallisation, and melt sources of Siberian Pre- and post-trap aillikites // Contributions to Mineralogy and Petrology. 2018. 173. https://doi.org/10.1007/s00410-018-1480-3
- 3. Vozniak A.A., Kopylova M.G., Peresetskaya E.V., Nosova A.A., Sazonova L.V., Anosova M.O. Olivine in lamprophyres of the Kola Alkaline Province and the magmatic evolution of olivine in carbonate melts // Lithos. 2023. 448–449. https://doi.org/10.1016/j.lithos.2023.107149
- 4. Arzamastsev A.A., Arzamastseva L.V., Bea F., Montero P. Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series: LA-ICP-MS data for the magmatic provinces of northeastern Fennoscandia and Germany // Petrology. 2009. 17. 46–72.
- 5. Арзамасцев А.А., Беляцкий Б.В., Травин А.В., Арзамасцева Л.В., Царев С.E. Дайковые породы в Хибинском массиве: связь с плутоническими сериями, возраст, характеристика мантийных источников // Петрология. 2005. 13(3). 1–23.
- 6. Шайхутдинова Д.Р., Сазонова Л.В., Лебедева Н.М., Носова А.А., Каргин А.В., Арзамасцев А.А., Ковач В.П. Поздний этап палеозойского магматизма Кольской щелочной провинции: особенности формирования трубки взрыва лампрофиров горы Намуайв (Хибины) // Петрология. 2025. № 4. (в печати).
- 7. Sindern S., Zaitsev A.N., Demény A., Bell K., Chakmouradian A.R., Kramm U., Moutte J., Rukhlov A.S., Mineralogy and geochemistry of silicate dyke rocks associated with carbonatites from the Khibina complex (Kola, Russia) – Isotope constraints on genesis and small-scale mantle sources // Mineralogy and Petrology. 2004. 80. 215–239. https://doi.org/10.1007/s00710-003-0016-2
- 8. Beard A.D., Downes H., Mason P.R.D., Vetrin V.R. Depletion and enrichment processes in the lithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzolite and wehrlite xenoliths // Lithos. 2007. 94. 1–24. https://doi.org/10.1016/j.lithos.2006.02.002
- 9. Zhang Y., Namur O., Li W., Shorttle O., Gazel E., Thy P., Grove T.L., Charlier B. An extended calibration of the olivine-spinel aluminum exchange thermometer: Application to the melting conditions and mantle lithologies of large igneous provinces // Journal of Petrology. 2023. 64(11), egad077 https://doi.org/10.1093/petrology/egad077/7306866
- 10. Mallmann G., O’Neill H.S.C. Calibration of an empirical thermometer and oxybarometer based on the partitioning of Sc, Y and V between olivine and silicate melt // Journal of Petrology. 2013. 54. 933–949. https://doi.org/10.1093/petrology/egt001
- 11. Ziberna L., Nimis P., Kuzmin D., Malkovets V.G. Error sources in single-clinopyroxene thermobarometry and a mantle geotherm for the Novinka kimberlite, Yakutia. American Mineralogist. 2016. 101. 2222–2232. https://doi.org/10.2138/am 2016-5540
- 12. Bussweiler Y., Brey G.P., Pearson D.G., Stachel T., Stern R.A., Hardman M.F., Kjarsgaard B.A., Jackson S.E. The aluminum-in-olivine thermometer for mantle peridotites – Experimental versus empirical calibration and potential applications // Lithos. 2017. 272–273. 301–314. https://doi.org/10.1016/j.lithos.2016.12.015
- 13. Pilbeam L.H., Nielsen T.F.D., Waight T.E. Digestion Fractional Crystallization (DFC): an Important Process in the Genesis of Kimberlites. Evidence from Olivine in the Majuagaa Kimberlite, Southern West Greenland // Journal of Petrology. 2013. 54. 1427–1453. https://doi.org/10.1093/petrology/egt016
- 14. Danyushevsky L.V., Plechov P. “Petrolog3: Integrated software for modeling crystallization processes // Geochem. Geophys. Geosyst. 2011. 12. https://doi.org/10.1029/2011GC003516
- 15. Koshlyakova A.N., Sobolev A.V., Krasheninnikov S.P., Batanova V.G., Borisov A.A., Ni partitioning between olivine and highly alkaline melts: an experimental study // Chem. Geol. 2022. 587. 120615. https://doi.org/10.1016/j.chemgeo.2021.120615
- 16. Gavrilenko M., Herzberg C., Vidito C., Carr M.J., Tenner T., Ozerov A. A Calcium-in-Olivine Geohygrometer and its Application to Subduction Zone Magmatism // Journal of Petrology. 2016. 57. 1811–1832. https://doi.org/10.1093/petrology/egw062
- 17. Nosova A.A., Kopylova M.G., Sazonova L.V., Vozniak A.A., Kargin A.V., Lebedeva N.M., Volkova G.D., Peresetskaya E.V. Petrology of lamprophyre dykes in the Kola Alkaline Carbonatite Province (N Europe) // Lithos. 2021. 398–399. 106277. https://doi.org/10.1016/j.lithos.2021.106277
- 18. Kargin A.V. Multistage Mantle Metasomatism during the Generation of Kimberlite Melts: Evidence from Mantle Xenoliths and Megacrysts of the Grib Kimberlite, Arkhangelsk, Russia // Petrology. 2021. 29. 227–255. https://doi.org/10.1134/S0869591121030024
- 19. Howarth G.H., Giuliani A., Soltys A., Bussweiler Y. Compositional Variations in Primitive Kimberlite Melts and Entrained Mantle Cargo from a Global Survey of Trace Element Compositions in Kimberlite Olivine // Journal of Petrology. 2022. 63. https://doi.org/10.1093/petrology/egac062
- 20. Сазонова Л.В., Носова А.А., Каргин А.В., Борисовский С.Е., Третяченко В.В., Абазова З.М., Грибань Ю.Г. Оливин кимберлитов трубок Пионерская и им. В. Гриба (Архангельская алмазоносная провинция): типы, состав, происхождение // Петрология. 2015. 23. 251–284. https://doi.org/10.7868/s086959031503005x
- 21. Giuliani A., Gies N.B., Faccanoni A., Hermann J., De Hoog J.C.M., Padrón-Navarta J.A., Cayzer N., Schmidt M.W. Hydrogen Zoning in Olivine from Kimberlites Based on Coupled FTIR and SIMS Analyses: Significance for H2O Distribution in the Lithospheric Mantle and H2O Concentrations in Kimberlite Melts // Journal of Petrology. 2025. 66. https://doi.org/10.1093/petrology/egaf018
- 22. Ponomarev G., Vladykin N., Radomskaya T. Genetic Role of Calcium Content in Olivine Crystals of Ultramafic and Mafic Rocks // American Journal of Physical Chemistry. 2020. 9. 16. https://doi.org/10.11648/j.ajpc.20200902.11