RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

DISPLAYING THE STRUCTURE AND RHEOLOGICAL PROPERTIES OF A FAULT ZONE IN THE CHARACTERISTICS OF BACKGROUND SEISMICITY

PII
S30345065S2686739725080146-1
DOI
10.7868/S3034506525080146
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 2
Pages
298-304
Abstract
Spatial heterogeneity of structural and rheological properties of a fault is one of the key factors determining the dynamics of its deformation. The paper analyzes spatial and temporal patterns of seismic localization in several segments of the San Andreas fault zone. Groups of background and clustered events are distinguished. It is shown that background events exhibit structural features of the fault. Asperities in the fault plane appear as dense clusters of background events. Foci of strong earthquakes with magnitudes exceeding the maximum magnitude of background events 1.5–2 times completely rupture at least one contact spots. The fault area located between the asperities controls the slow postseismic slip and, consequently, postseismic aftershock activity. The number of aftershocks is maximal at the boundary of the earthquake's focal area and decreases monotonously with distance from the hypocenter. In the area between the asperities, the speed of aftershock migration is 0.01–10 km/day.
Keywords
тектонический разлом разрыв землетрясения медленное скольжение афтершоки контактная область
Date of publication
05.05.2025
Year of publication
2025
Number of purchasers
0
Views
25

References

  1. 1. Waldhauser F. Near-real-time double-difference event location using long-term seismic archives, with application to Northern California // Bull. Seism. Soc. Am. 2009. № 99. P. 2736–2848. https://doi.org/10.1785/0120080294
  2. 2. Кочарян Г.Г. Геомеханика разломов. М.: ГЕОС, 2016.
  3. 3. Гридин Г.А., Остапчук А.А., Григорьева А.В., Павлов Д.В., Черемных А.В., Бобров А.А., Декабрёв И.К. Вариации структурных и физико-механических свойств тектонического разлома в приповерхностной зоне // Физика Земли. 2025. № 1. С. 138–150.
  4. 4. Collettini C., Tesei T., Scuderi M.M., Carpenter B.M., Viti C. Beyond Byerlee Friction, Weak Faults and Implications for Slip Behavior // Earth Planet. Sci. Lett. 2019. № 519. P. 245–263. https://doi.org/10.1016/j.epsl.2019.05.011
  5. 5. Ide S. Frequent observations of identical onsets of large and small earthquakes // Nature. 2019. V. 573. P. 112–116. https://doi.org/10.1038/s41586-019-1508-5
  6. 6. Adushkin, V.V., Besedina, A.N., Kocharyan, G.G. et al. A New Approach to Hazard Control of Human-Triggered Earthquakes near Mining Facilities // Dokl. Earth Sc. 2024. V. 519. P. 1930–1935. https://doi.org/10.1134/S1028334X24603213
  7. 7. Villegas-Lanza J., Nocquet J.M., Rolandone F. et al. A mixed seismic–aseismic stress release episode in the Andean subduction zone // Nature Geosci. 2016. № 9. P. 150–154. https://doi.org/10.1038/ngeo2620
  8. 8. Shebalin P.N., Narteau C., Baranov S.V. Earthquake productivity law // Geophysical Journal International. 2020. № 222. P. 1264–1269. https://doi.org/10.1093/gji/ggaa252
  9. 9. Zaliapin I., Ben-Zion Y. Earthquake Clusters in Southern California I: Identification and Stability // J. Geophys. Res. Solid Earth. 2013. № 118. P. 2847–2864. https://doi.org/10.1002/jgrb.50179
  10. 10. Баранов С.В., Шебалин П.Н. Закономерности постсейсмических процессов и прогноз опасности сильных афтершоков. M.: РАН, 2019. 218 с.
  11. 11. Кочарян Г.Г., Остапчук А.А. Мезоструктура зоны скольжения тектонического разлома // Физическая мезомеханика. 2022. Т. 25. № 5. С. 94–105.
  12. 12. Ester M., Kriegel H.-P., Sander J., Xiaowei X. A density-based algorithm for discovering clusters in large spatial databases with noise / Proceedings of the Second International Conference on Knowledge Discovery in Databases and Data Mining. 1996. P. 226–231.
  13. 13. Frank W.B., Poli P., Perfettini H. Mapping the rheology of the Central Chile subduction zone with aftershocks // Geophys. Res. Lett. 2017. № 44. https://doi.org/10.1002/2016GL072288
  14. 14. Brune J.N. Tectonic stress and spectra of seismic shear waves from earthquakes // J. Geophys. Res. 1970. № 75. P. 4997–5009. https://doi.org/10.1029/JB075i026p04997
  15. 15. Kanamori H., Stewart G.S., Seismological aspects of the Guatemala earthquake of February 4, 1976 // J. Geophys. Res. 1978. V. 83. P. 3427–3434. 
https://doi.org/10.1029/JB083iB07p03427
  16. 16. Федотов С.А., Соломатин А.В., Чернышев С.Д. Долгосрочный сейсмический прогноз для Курило-Камчатской дуги на IX 2010 – VIII 2015 гг., достоверность предыдущих прогнозов и их применение // Вулканология и сейсмология. 2011. № 2. С. 3–27.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library