RAS PresidiumДоклады Российской академии наук. Науки о Земле Doklady Earth Sciences

  • ISSN (Print) 2686-7397
  • ISSN (Online) 3034-5065

THREE-DIMENSIONAL MODEL OF CONVECTION IN A REALLY HETEROGENEOUS MANTLE AS A BASIS FOR QUANTITATIVE GENERALIZATION OF PLATE TECTONICS FOR THE PRESENT STAGE OF EARTH DEVELOPMENT

PII
S30345065S2686739725080157-1
DOI
10.7868/S3034506525080157
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 523 / Issue number 2
Pages
305-310
Abstract
Using the Stokes equation and non-Newtonian rheology, instantaneous velocities of three-dimensional flows in the Earth's mantle are calculated based on the global seismic tomography model SMEAN 2. The model automatically takes into account the main forces acting in the mantle and on the Earth's surface. The constructed 3D model of mantle flows describes well the horizontal movements of the Earth's surface, which are observed using space geodesy and provides a quantitative basis for interpreting the features of regional geological processes. The constructed spherical 3D model of modern global geodynamics is a quantitative generalization of the theory of plate tectonics for the current stage of the Earth's development.
Keywords
тектоника плит модель глобальной геодинамики мантийная конвекция сейсмическая томография литосфера космическая геодезия
Date of publication
12.05.2025
Year of publication
2025
Number of purchasers
0
Views
23

References

  1. 1. Лобковский Л.И. Тектоника деформируемых литосферных плит и модель региональной геодинамики применительно к Арктике и Северо-Восточной Азии // Геология и геофизика. 2016. Т. 57. № 3. С. 476–495.
  2. 2. Трифонов В.Г., Соколов С.Ю. Пoдлитосферные течения в мантии // Геотектоника. 2017. № 6. С. 3–17.
  3. 3. Becker T., O’Connell R. Predicting plate velocities with mantle circulation models // Geochemistry, Geophysics, Geosystems. 2001. V. 2. https://doi.org/10.1029/2001GC000171
  4. 4. Becker T. On the effect of temperature and strain-rate dependent viscosity on global mantle flow, net rotation and plate-driving forces // Geophysical Journal International. 2006. № 167. P. 943–957.
  5. 5. Баранов А.А., Лобковский Л.И., Бобров А.М. Глобальная геодинамическая модель современной Земли и ее приложение для Антарктиды // Доклады РАН. Науки о Земле. 2023. Т. 512. № 1. С. 100–105.
  6. 6. Лобковский Л.И., Баранов А.А., Бобров А.М. Чуваев А.В. Глобальная геодинамическая модель современной Земли и ее приложение для Арктического региона // Доклады РАН. Науки о Земле. 2024. Т. 514. № 2. С. 293–299.
  7. 7. Jackson M., Konter J., Becker T. Primordial helium entrained by the hottest mantle plumes // Nature. 2017. V. 542. P. 340–343.
  8. 8. Zhong S., Zuber M.T., Moresi L.N., Gurnis M. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection // Journal of Geophysical Research: Solid Earth. 2000. V. 105. No. B5. P. 11063–11082.
  9. 9. McNamara A. K., Zhong S. Thermochemical structures within a spherical mantle: Superplumes or piles? // Journal of Geophysical Research: Solid Earth. 2004. V. 109(B7) P. 1–14.
  10. 10. Zhong S., Zhang N., Li Z.X., Roberts J.H. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection // Earth and Planetary Science Letters. 2007. V. 261. P. 551–564.
  11. 11. Бобров А.М., Баранов А.А. Структура мантийных течений и поля напряжений в двумерной модели конвекции с неньютоновской реологией // Геология и геофизика. 2014. Т. 55. № 7. С. 1015–1027.
  12. 12. Бобров А.М., Баранов А.А. Модель мантийной конвекции с неньютоновской реологией и фазовыми переходами: структура течений и поля напряжений // Физика Земли. 2016. Т. 52. № 1. С. 133–148.
  13. 13. Megnin C., Romanowicz B. The shear velocity structure of the mantle from the inversion of body, surface, and higher modes waveforms // Geophysical Journal International. 2000. V. 143. P. 709–728.
  14. 14. Schubert G., Turcotte D.L., Olson P. Mantle Convection in the Earth and Planets. New York: Cambridge Univ. Press, 2001. 940 p.
  15. 15. McNamara A.K., van Keken P.E., Karato S.I. Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy // Journal of Geophysical Research: Solid Earth. 2003. V. 108. No. B5. Art. 2230.
  16. 16. Paulson A., Zhong Sh., Wahr J. Modelling postglacial rebound with lateral viscosity variations // Geophysical Journal International. 2005. V. 163. P. 357–371.
  17. 17. Ramage A., Wathen A.J. Iterative solution techniques for the Stokes and Navier-Stokes equations // International Journal for Numerical Methods in Fluids. 1994. V. 19. P. 67–83.
  18. 18. Чуваев А.В., Баранов А.А., Бобров А.М. Численное моделирование конвекции в мантии Земли с использованием облачных технологий // Вычислительные технологии. 2020. Т. 25. № 2. C. 103–117.
  19. 19. Altamimi Z., Métivier L., Rebischung P., Rouby H., Collilieux X. ITRF2014 plate motion model // Geophysical Journal International. 2017. V. 209. P. 1906–1912.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library