- PII
- S30345065S2686739725030161-1
- DOI
- 10.7868/S3034506525030161
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 521 / Issue number 1
- Pages
- 123-135
- Abstract
- Active exploration of space for communication, navigation, and Earth remote sensing in recent decades has drawn increased attention to the study of the Sun’s impact on the Earth and requires creating effective models for space weather forecast. Magnetic storms that produce disturbances in the ionosphere and atmosphere are the strongest manifestation of space weather. Among such events is the magnetic storm that started on May 10, 2024, during which the auroral oval reached 19° N. Over the past 20 years since the last magnetic storm of similar intensity was observed, new scientific facilities have been put into operation as part of the National Heliogeophysical Complex of the Russian Academy of Sciences. A huge decrease in the electron density (by a factor of five relative to the background level) and record-breaking airglow of the upper atmosphere (the atomic oxygen red line airglow exceeded 25 kR) compared to the strongest storms in solar cycle 23 were recorded. The combined optical and radio-physical measurements in Eastern Siberia, supported by data from global networks, demonstrated the correlation between the temperature increase in the upper atmosphere and a strong decrease in the ionospheric electron density at mid-latitudes due to increased recombination during the storm. Combined measurements from ionosonde and high-frequency radar networks have shown a significant deterioration in the conditions of radio wave propagation. The complementarity of the currently deployed scientific instruments opens up new opportunities for monitoring the state of the near-Earth space, as well as for studying and modeling dynamic processes during such extreme phenomena with unprecedented detail.
- Keywords
- магнитная буря ионосфера Национальный гелиогеофизический комплекс ионозонд радар некогерентного рассеяния интерферометр Фабри—Перо свечение атмосферы распространение радиоволн температура атмосферы
- Date of publication
- 13.11.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 62
References
- 1. Pilipenko V. Space weather impact on ground-based technological systems // Sol.-Terr. Phys. 2021. V. 7. № 3. P. 68-104. https://doi.org/10.12737/stp-73202106
- 2. Meng X., Tsurutani B.T., Mannucci A.J. The Solar and Interplanetary Causes of Superstorms (Minimum Dst ≤ -250 nT) During the Space Age // J. Geophys. Res. Space Phys. 2019. V. 124. № 6. P. 3926-3948. https://doi.org/10.1029/2018JA026425.
- 3. Wang C., Xu J., Liu L. et al. Contribution of the Chinese Meridian Project to space environment research: Highlights and perspectives // Sci. China Earth Sci. 2023. V. 66. № 7. P. 1423-1438. https://doi.org/10.1007/s11430-022-1043-3
- 4. Zherebtsov G.Complex of heliogeophysical instruments of new generation // Sol.-Terr. Phys. 2020. V. 6. № 2. P. 3-13. https://doi.org/10.12737/stp-62202001
- 5. Gonzalez W.D., Joselyn J.A., Kamide Y. et al. What is a geomagnetic storm? // J. Geophys. Res. Space Phys. 1994. V. 99. № A4. P. 5771-5792. https://doi.org/10.1029/93JA02867
- 6. Pi X., Mannucci A.J., Lindqwister U.J., Ho C.M. Monitoring of global ionospheric irregularities using the Worldwide GPS Network // Geophys. Res. Lett. 1997. V. 24. № 18. P. 2283-2286. https://doi.org/10.1029/97GL02273
- 7. Jia H., Yang Z., Li B. ROTI-based statistical regression models for GNSS precise point positioning errors associated with ionospheric plasma irregularities // GPS Solut. 2024. V. 28. № 3. P. 105. https://doi.org/10.1007/s10291-024-01648-0
- 8. Reinisch B.W., Galkin I.A. Global Ionospheric Radio Observatory (GIRO) // Earth Planets Space. 2011. V. 63. № 4. P. 377-381. https://doi.org/10.5047/eps.2011.03.001
- 9. Vasilyev R., Artamonov M., Beletsky A. et al. Scientific goals of optical instruments of the National Heliogeophysical Complex // Sol.-Terr. Phys. 2020. V. 6. № 2. P. 84-97. https://doi.org/10.12737/stp-62202008
- 10. Vasilyev R., Artamonov M., Beletsky A. et al. Registering upper atmosphere parameters in East Siberia with Fabry-Perot Interferometer KEO Scientific “Arinae” // Sol.-Terr. Phys. 2017. V. 3. № 3. P. 61-75. https://doi.org/10.12737/stp-33201707
- 11. Ratovsky K.G., Medvedev A.V., Tolstikov M.V., Kushnarev D.S. Case studies of height structure of TID propagation characteristics using cross-correlation analysis of incoherent scatter radar and DPS-4 ionosonde data // Adv. Space Res. 2008. V. 41. № 9. P. 1454-1458. https://doi.org/10.1016/j.asr.2007.03.008
- 12. Themens D.R., Elvidge S., McCaffrey A. et al. The High Latitude Ionospheric Response to the Major May 2024 Geomagnetic Storm: A Synoptic View // Geophys. Res. Lett. 2024. V. 51. № 19. e2024GL111677. https://doi.org/10.1029/2024GL111677
- 13. Bilitza D., Pezzopane M., Truhlik V. et al. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark // Rev. Geophys. 2022. V. 60. № 4. P. 1-11. https://doi.org/10.1029/2022RG000792
- 14. Evans J.S., Correira J., Lumpe J.D. et al. GOLD Observations of the Thermospheric Response to the 10-12 May 2024 Gannon Superstorm // Geophys. Res. Lett. 2024. V. 51. № 16. e2024GL110506. https://doi.org/10.1029/2024GL110506
- 15. Zherebtsov G.A., Tashchilin A.V., Perevalova N.P., Ratovsky K.G., Medvedeva I.V. Modeling the Influence of Changes in the Parameters of a Neutral Atmosphere on the Ionospheric Electron Density // Dokl. Earth Sci. 2024. V. 517. № 2. P. 1371-1376. https://doi.org/10.1134/S1028334X2460227X
- 16. Подлесный А.В., Брынько И.Г., Березовский В.А., Киселёв А.М., Петухов Е.В. Многофункциональный ЛЧМ-ионозонд для мониторинга ионосферы // Гелиогеофизические Исследования. 2013. № 4. C. 24-31.
- 17. Berngardt O., Kurkin V., Kushnarev D. et al. ISTP SB RAS decameter radars // Sol.-Terr. Phys. 2020. V. 6. № 2. P. 63-73. https://doi.org/10.12737/stp-62202006
- 18. Bland E.C., Heino E., Kosch M.J., Partamies N. SuperDARN Radar-Derived HF Radio Attenuation During the September 2017 Solar Proton Events // Space Weather. 2018. V. 16. № 10. P. 1455-1469. https://doi.org/10.1029/2018SW001916
- 19. Ratovsky K.G., Klimenko M.V., Vesnin A.M., Belyuchenko K.V., Yasyukevich Y.V.Comparative Analysis of Geomagnetic Events Identified According to Different Indices // Bull.Russ. Acad. Sci. Phys. 2024. V. 88. № 3. P. 296-302. https://doi.org/10.1134/S1062873823705433
- 20. Mikhalev A.V., Beletsky A.B., Kostyleva N.V., Chernigovskaya M.A. Midlatitude auroras in the south of Eastern Siberia during strong geomagnetic storms on October 29-31, 2003 and November 20-21, 2003 // Cosm. Res. 2004. V. 42. № 6. P. 591-596. https://doi.org/10.1007/s10604-005-0006-8